

Blacktown Boys' High School 2020 Year 12 HSC Trial Examination

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided for this paper
- All diagrams are not drawn to scale
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks: 100

Total marks: Section I – 10 marks (pages 3 – 7)

- Attempt Questions 1 − 10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 8-34)

- Attempt Questions 11 32
- Allow about 2 hour 45 minutes for this section

Assessor: Mrs Chirgwin

Student Name: _	
Teacher Name:	

Students are advised that this is a trial examination only and cannot in any way guarantee the content or format of the 2020 Higher School Certificate Examination.

Section I

10 marks Attempt Questions 1–10 Allow about 15 minutes for this section

Use the multiple choice answer sheet for Questions 1–10.

- Q1. What is the domain of the function $f(x) = \sqrt{1 x^2}$?
 - A. (0, 1)
 - B. [0, 1]
 - C. (-1,1)
 - D. [-1, 1]
- Q2. What is the angle of inclination of the line $\sqrt{3}x y + 2\sqrt{3} = 0$ with respect to the positive x-axis?
 - A. 30°
 - B. 60°
 - C. 120°
 - D. 150°
- Q3. Which of the following is equal to $\frac{\log_3 32}{\log_3 2}$?
 - A. $\log_3 30$
 - B. log₃ 16
 - C. 16
 - D. 5

- Q4. John works in a cake shop, and based on sales over two weeks, he conducted a survey of the five most popular cakes. What type of data is this?
 - A. Categorical nominal
 - B. Categorical ordinal
 - C. Quantitative continuous
 - D. Quantitative discrete
- Q5. The graph below shows the cost of producing boxes of chocolates and the income received from their sale.

Use the graph to determine the number of boxes that need to be sold to break even.

- A. 5
- B. 4
- C. 3
- D. 2

BBHS 2020 Year 12 Mathematics Advanced Trial Examination

Q6. The time taken to travel between two regional cities is approximately normally distributed with a mean of 85 minutes and a standard deviation of 4 minutes.

The percentage of travel times that are between 81 minutes and 93 minutes is closest to

- A. 68%
- B. 70.5%
- C. 81.5%
- D. 95%
- Q7. The Pareto chart below shows the order received by a business for five months.

What percentage of orders were received in May?

- A. 69%
- B. 45%
- C. 30%
- D. 18%

Q8. Which statement is true for the point P on the curve y = f(x)?

- A. f'(a) < 0, f''(a) < 0
- B. f'(a) > 0, f''(a) > 0
- C. f'(a) < 0, f''(a) > 0
- D. f'(a) > 0, f''(a) < 0
- Q9. A box contains five red marbles and four blue marbles. Stella selects three marbles at random, without replacing them.

The probability that at least one of the marbles that Stella selects is red is

- A. $\frac{5}{9}$
- B. $\frac{20}{21}$
- C. $\frac{5}{42}$
- D. $\frac{665}{729}$

Q10. Consider the graphs of the function f(x) and g(x) shown below.

The area of the shaded region could be represented by

A.
$$\int_{a}^{d} (f(x) - g(x)) dx$$

B.
$$\int_0^d (f(x) - g(x)) dx$$

C.
$$\int_0^b (f(x) - g(x)) dx + \int_b^c (f(x) - g(x)) dx$$

D.
$$\int_0^d f(x)dx - \int_a^c g(x)dx$$

End of Section I

Mathematics Advanced Section II Answer Booklet

90 marks
Attempt Questions 11-32
Allow about 2 hour and 45 minutes for this section

Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.

Please turn over

Question 11 (3 marks)

The diagram shows $\triangle ABC$ with sides AB = 8 cm, BC = 7 cm and AC = 10 cm.

8~cm	
Show that $\cos A = \frac{23}{32}$.	1
By finding the exact value of $\sin A$, determine the exact value of the area of ΔABC .	2
	Show that $\cos A = \frac{23}{32}$. By finding the exact value of $\sin A$, determine the exact value of the area of

Question 12 (3 Marks)

In an arithmetic series, the first term is 18 and the sum of the first 20 terms is 1310. Show that the 20th term is 113. 1 a) Find the common difference. b) 1 Find the sum of first 35 terms. 1 c)

Question 13 (3 marks)

Given the graph of f(x) = |ax + b|

a)	What are the values of a and b ?	2
b)	Solve for $f(x) \ge 3$.	1

Question 14 (4 marks)

1	Di	Ct	•			٠:	- 4	L -
) 1	TT	$\boldsymbol{\rho}$ 1	re	ทา	Г1	วา	10

a)	$y = \tan^3\left(\frac{x}{4}\right)$	2
b)	$y = \frac{e^{3x} - 5}{x + 1}$	2

Question 15 (2 marks)

What is the limiting sum of the following geometric series?				
750, -300, 120, -48,				
Question 16 (2 marks)				
The first four terms of a geometric sequence are 48 , m , n and 750 . Find the values of m and n .	2			

Question 17 (6 marks)

Find the primitive functions of

$\int (5x+3)$	$(3)^{19}dx$		
		 	• • • • • • • • • • • • • • • • • • • •
•••••		 	
•••••		 	• • • • • • • • • • • • • • • • • • • •
$\int \left(2x^3 + \right.$	$-\frac{1}{3x+1}dx$		
$\int \left(\sin 10\right)$	$\left(x - \frac{2}{e^{5x}}\right) dx$		

Question	18	(4)	marks)
----------	----	-----	--------

Show that	$\frac{d}{dx}(e^{2x}\cos x) =$				
• • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	
• • • • • • • • • • • • • • • • • • • •					•••••
•••••					•••••
• • • • • • • • • • • • • • • • • • • •					
Hence find point when	If the equation of the $x = 0$.	the tangent to	the curve y	$=e^{2x}\cos x$ at	the
		the tangent to	the curve y	$= e^{-x} \cos x$ at	the
		the tangent to	the curve y	= e-~ cos x at	the
		the tangent to	the curve y	= e-~ cos x at	the
		the tangent to	• the curve y	= e-~ cos x at	
				= e-~ cos x at	
point when	$\operatorname{re} x = 0.$				
point when	$\operatorname{re} x = 0.$				
point when	$\operatorname{re} x = 0.$				
point when	$\operatorname{re} x = 0.$				
point when	$\operatorname{re} x = 0.$				

Question 19 (4 marks)

The table below gives the present value of an annuity of \$1 at the given interest rate for the given period.

Present Value Interest Factors (PVA)										
\$1		Interest Rate Per Period								
N	1%	2%	3%	4%	5%	6%	7%	8%		
1	0.9901	0.9804	0.9709	0.9615	0.9524	0.9434	0.9346	0.9269		
2	1.9704	1.9416	1.9135	1.8861	1.8594	1.8334	1.8080	1.7833		
3	2.9410	2.8839	2.8286	2.7751	2.7232	2.6730	2.6243	2.5771		
4	3.9020	3.8077	3.7171	3.6299	3.5460	3.4651	3.3872	3.3121		
5	4.8545	4.7135	4.5797	4.4518	4.3295	4.2124	4.1002	3.9927		
6	5.7955	5.6014	5.4172	5.2421	5.0757	4.9173	4.7665	4.6229		
7	6.7282	6.4720	6.2303	6.0021	5.7864	5.5824	5.3893	5.2064		
8	7.6517	7.3255	7.0197	6.7327	6.4632	6.2098	5.9713	5.7466		
9	8.5660	8.1622	7.7861	7.4353	7.1078	6.8017	6.5152	6.2469		
10	9.4713	8.9826	8.5302	8.1109	7.7217	7.3601	7.0236	6.7101		

a)	Jesse plans to invest \$7500 per year for 8 years in an annuity. His investment will earn interest at the rate of 6% per annum. Calculate the present value of his annuity.	2
b)	Shaon takes out a loan of \$12000 to buy a car. This loan is to be repaid over 5 years at an interest rate of 8% per year. Use the PVA table to find his yearly repayments.	2

Question 20 (2 marks)	
The curve $y = f(x)$ passes through the point $(-1, 2)$ and $f'(x) = 4x^3 - 3$.	2
Find $f(x)$.	
Question 21 (3 marks)	
Show that $\int_0^2 \sqrt{4x + 1} dx = \frac{13}{3}$	3

Question	22	(3	marks	١
Question		()	manko	,

Solve $4\cos^2 x - 3 = 0$ for $-\pi \le x \le \pi$.	3

Question 23 (3 marks)

A discrete random variable *X* has the probability distribution table shown.

X = x	20	21	22	23
P(x)	0.24	0.2	m	0.4

By finding the value of m, calculate the expected value and the variance of X.

3

Question 24 (3 marks)

Given that $y = \log_e(2^x - x)$

a)	Complete the table below by finding the missing value of y to 3 decimal
	places.

1

2

x	1	1.5	2	2.5	3
у	0	0.284	0.693		1.609

•••••	 	

b)	Use the trapezoidal rule with all the values of y from the table above to
	find and approximation for the value of

$\int_{1}^{1} \log_{e}(2)$	(x-x) dx	ĸ

••																															
••																															
••																															
••	 	••	٠.	 	 •	 	 	 ••	• •	 	 	٠.	•	 	 	 	 	•	 		 ٠.	•	•	 ٠.	٠.	•	• •	 	 	 	

.....

Question 25 (5 marks)

A biologist assumes that there is a linear relationship between the amount of fertiliser supplied to tomato plants and the subsequent yield of tomatoes obtained.

Eight tomato plants, of the same variety, were selected at random and treated, weekly, with a solution in which x grams of fertiliser was dissolved in a fixed quantity of water. The yield, y kilograms, of tomatoes was recorded.

Plant	Α	В	С	D	Ε	F	G	Н
x	1.0	1.0	1.5	2.0	2.5	2.8	3.0	3.5
у	3.9	4.0	4.4	5.8	6.6	6.8	7.0	7.1

a)	Use the scatterplot to describe the association between 'yield' and 'fertiliser' in terms of strength and direction.	1

Question 25	(continued)

	rmine the equation of the least-squares regression line for this data. and your values to two significant figures.
• • • • •	
• • • • •	
• • • • •	
• • • • •	
••••	
A pl	ant with 2.2 grams of fertiliser was not recorded by accident.
Calc	ulate the predicted yield for this plant using your answer in part b).
••••	
•••••	
••••	
	ain why you should not extrapolate from this data to find the yield for rates of fertiliser usage.
• • • • •	
• • • • •	

Question 26 (7 marks)

Consider the curve given by $y = 3x - x^3 - 1$, for $-3 \le x \le 2$.

Tillu	the stationary points and determine their nature.
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
• • • • •	
••••	
• • • • •	
• • • • •	
• • • • •	

Question 26 continues on next page

Question 26	(continued)
-------------	-------------

Find the point of inflection.	
Sketch the curve for $-3 \le x \le 2$, showing all key features.	

Question 27 (5 marks)

The chocolate consumption per person per day of a population of people was found to be normally distributed with a mean of 68.95 grams and a standard deviation of 18.45.

	ve what chocolate consumption rate does 2.5% of this population lie?
	ul consumed 50.5 grams of chocolate in one day. What percentage of population have a chocolate consumption rate more than Rahul's?
••••	
• • • • •	
then Ben	en takes a sample of people from this population and finds that 6 of a consumed less than 13.6 grams of chocolate per person per day. If sample has the same distribution as this population, what is Ben's ple size?
••••	
• • • • •	
• • • • •	
• • • • •	
• • • • •	

Question 28 (5 marks)

The length of time, in minutes, that a customer queues to buy toilet paper is a random variable, X, with probability density function

$$f(x) = \begin{cases} k(64 - x^2) & \text{for } 0 \le x \le 8\\ 0 & \text{otherwise} \end{cases}$$

where k is a constant.

a)	Show that the value of k is $\frac{3}{1024}$.	2

Question 28 continues on next page

Question 28 (continued)

• • • • • • • •	
•••••	
• • • • • • • • • • • • • • • • • • • •	
•••••	
•••••	
Find th	ne probability that a customer will queue for longer than 5 minutes,
Find th	ne probability that a customer will queue for longer than 5 minutes, your answer to 4 significant figures.
Find th	ne probability that a customer will queue for longer than 5 minutes, your answer to 4 significant figures.
Find the round	ne probability that a customer will queue for longer than 5 minutes, your answer to 4 significant figures.
Find th	ne probability that a customer will queue for longer than 5 minutes, your answer to 4 significant figures.
round y	your answer to 4 significant figures.
round y	ne probability that a customer will queue for longer than 5 minutes, your answer to 4 significant figures.
round	your answer to 4 significant figures.
round	your answer to 4 significant figures.
round	your answer to 4 significant figures.
round	your answer to 4 significant figures.
round	your answer to 4 significant figures.
round <u>y</u>	your answer to 4 significant figures.

Question 29 (3 marks)

The diagram below shows the graphs of y = 5 - x and $y = \frac{4}{2x - 1}$

a) Show that the x-coordinate values of A and B are 1 and 4.5 respectively. 1

•••	•••	•••	•••	•••	• • • •	•••	•••	• • •	• • • •	• • • •	• • •	•••	•••	•••	•••		•••	• • • •	•••	• • • •	• • •	• • • •	• • •	• • •	• • • •		
											· • • •																
• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • • •			• • •	• • •	• • •	• • •	• • • •	•••	• • • •	• • •	• • • •	• • •		•••	• • •	• • • •	• • • •	
•••	•••	•••	•••	•••		•••	•••	•••	• • • •		•••	•••	•••	•••	•••	• • • •	•••	••••	•••	••••	•••	• • • •	•••	•••	• • • •	• • • •	

.....

b) Find the exact area of the shaded region. 3

.....

.....

Question 30 (5 marks)

A gardener plants a bed of roses. The bed is planted so that the first row has 24 rose plants. The second row has 29 rose plants. Each succeeding row has 5 more rose plants than the previous row.

a)	Calculate the number of rose plants in the 8 th row.	1
b)	Which row would be the first to contain more than 150 rose plants?	2

Question 30 continues on next page

Question 30 (continued)

:)	The gardener has planted 2895 rose plants altogether. Assuming that the above pattern has been continued, how many rows were planted?	2

Question 31 (8 marks)

A particle moves in a straight line. At time t seconds its displacement is x metres from the origin 0 on the line. The velocity of this particle is given by

 $v=2-4\cos 2t$, $0\leq t\leq 2\pi$

a)	Find the initial velocity of this particle.	1
b)	Find all the times when the particle is at rest, where $0 \le t \le 2\pi$.	2

c)	Sketch the graph of v as a function in terms of t , showing all key features.	2
d)	Find the acceleration of the particle when $t = \frac{\pi}{2}$.	1

Question 31 (continued)

)	Find the exact displacement of this particle when $t = \pi$ given that its initial displacement is 3 metres to the right of the origin.	Ź

Question 32 (6 marks)

A window in the chapel has been damaged by a storm and needs to be replaced. It is in the shape of a rectangle surmounted by a semi-circle, as shown.

1

Let the radius of the semi-circle be r metres and the height of the rectangle be h metres.

a)	Given that the	perimeter of the	window is to be	16π metres, show that	
----	----------------	------------------	-----------------	---------------------------	--

$$h = 8\pi - r - \frac{1}{2}\pi r$$

b) Hence, show that the area A of the window is given by the formula 1

$$A = 16\pi r - 2r^2 - \frac{1}{2}\pi r^2$$

.....

.....

.....

Question 32 (continued)

	Find the exact radius of the semi-circle for which the area of the window is to be a maximum.
•	
•	
•	
•	
•	
•	
•	
•	
F	Find the maximum area of this window correct to 1 decimal place.
•	
•	

	2020 Year 12 Mathematics Advanced AT4 Solution	ons
Section 1		
Q1	The domain of semi-circle $f(x) = \sqrt{1-x^2}$ with radius 1 is $-1 \le x \le 1$, in interval notation is $[-1,1]$	1 Mark
Q2	B $\sqrt{3}x - y + 2\sqrt{3} = 0$ $y = \sqrt{3}x + 2\sqrt{3}$ $\tan \theta = \sqrt{3}$ $\theta = 60^{\circ}$	1 Mark
Q3	$ \frac{\log_3 32}{\log_3 2} \\ = \frac{\log_3 2^5}{\log_3 2} \\ = \frac{5 \log_3 2}{\log_3 2} \\ = 5 $	1 Mark
Q4	A Type of cakes is categorical nominal	1 Mark
Q5	C Break even point = point of intersection Need to sell 3 boxes to break even.	1 Mark
Q6	c 81 is 1 sd below a mean of 85, and 93 is 2 sd above a mean of 85. $68\% + \frac{95\% - 68\%}{2}$ = 81.5%	1 Mark
Q7	$ \begin{array}{c} \mathbf{D} \\ 68\% - 50\% = 18\% \text{ or} \\ \frac{9}{25 + 9 + 8 + 5 + 3} = 18\% \end{array} $	1 Mark
Q8	A P is decreasing on the curve, so $f'(a) < 0P$ is also along there curve where it is concaving down, so $f''(a) < 0$	1 Mark
Q9	Probability of at least one red marble is the complement to probability of no red marbles $P(X \ge 1) = 1 - P(X = 0)$ $P(X \ge 1) = 1 - \frac{4}{9} \times \frac{3}{8} \times \frac{2}{7}$ $P(X \ge 1) = \frac{20}{21}$	1 Mark
Q10	$\int_{0}^{d} f(x)dx - \int_{a}^{c} g(x)dx$	1 Mark

Section 2		
Q11a	$\cos A = \frac{8^2 + 10^2 - 7^2}{2 \times 8 \times 10}$ $\cos A = \frac{23}{32}$	1 Mark
	$\cos A = \frac{2 \times 8 \times 10}{2 \times 8 \times 10}$	Correct solution
	$\cos A = \frac{23}{2}$	
	32	
Q11b	$\sqrt{32^2-23^2}$	2 Marks
	$\sin A = \frac{\sqrt{32} - 23}{32}$	Correct solution
	$\sqrt{495}^{2}$	
	$\sin A = \frac{1}{32}$	1 Mark
	$3\sqrt{55}$	Finds the exact value of
	$\sin A = \frac{\sqrt{32^2 - 23^2}}{32}$ $\sin A = \frac{\sqrt{495}}{32}$ $\sin A = \frac{3\sqrt{55}}{32}$	sin A
	1	
	$Area = \frac{1}{2} \times 8 \times 10 \times \sin A$ $Area = \frac{1}{2} \times 8 \times 10 \times \frac{3\sqrt{55}}{32}$	
	$Area = \frac{1}{2} \times 8 \times 10 \times \frac{3\sqrt{55}}{22}$	
	2 32 15√55	
	$Area = \frac{15\sqrt{55}}{4} units^2$	
	4	
Q12a	$S_n = \frac{n}{2}(a+l)$	1 Mark
		Correct solution
	$S_{20} = \frac{20}{2}(18+l)$	
	1310 = 10(18 + l)	
	131 = 18 + l	
	l = 131 - 18	
	l = 113	
Q12b	$T_n = a + (n-1)d$	1 Mark
	$T_{20} = 18 + 19d$	Correct solution
	113 = 18 + 19d	
	$ 95 = 19d \\ d = 5 $	
	u - 3	
Q12c	$S = \frac{n}{(2a + (n-1)d)}$	1 Mark
	$S_n = \frac{n}{2}(2a + (n-1)d)$	Correct solution
	$S_{35} = \frac{35}{2}(2 \times 18 + (35 - 1) \times 5)$	
	$S_{35} = \overset{2}{3605}$	
Q13a	x intercept at 2.5	2 Marks
	2.5a - 5 = 0	Correct solution
	2.5a = 5 $ a = 2$	4.841
	u-2	1 Mark Correct value of a or b
	y intercept at 5	
	0+b =5	
	$b = \pm 5$	
	Check a point (2, 1)	
	$1 \neq 2 \times 2 + 5 $ $1 = 2 \times 2 - 5 $	
	$ \begin{vmatrix} 1 = 2 \times 2 - 5 \\ \therefore b = -5 \end{vmatrix} $	
	$\therefore a = 2, b = -5$	
Q13b	$ 2x - 5 \ge 3$	1 Mark
	$x \le 1, x \ge 4$	Correct solution

Q14a	2 (*)	2 Marks
Q14a	$y = \tan^3\left(\frac{x}{4}\right)$	Correct solution
	$\frac{dy}{dx} = 3 \times \frac{1}{4} \sec^2\left(\frac{x}{4}\right) \times \tan^2\left(\frac{x}{4}\right)$ $\frac{dy}{dx} = \frac{3}{4} \sec^2\left(\frac{x}{4}\right) \tan^2\left(\frac{x}{4}\right)$	1 Mark Correct differentiation of $\tan \frac{x}{4}$
Q14b	$y = \frac{e^{3x} - 5}{x + 1}$	2 Marks Correct solution
	$\frac{dy}{dx} = \frac{(x+1) \times 3e^{3x} - (e^{3x} - 5) \times 1}{(x+1)^2}$	1 Mark Correct differentiation of $e^{3x} - 5$
	$\frac{dy}{dx} = \frac{3xe^{3x} + 3e^{3x} - e^{3x} + 5}{(x+1)^2}$	
	$\frac{dy}{dx} = \frac{3xe^{3x} + 2e^{3x} + 5}{(x+1)^2}$	
Q15	750, -300, 120, -48,	2 Marks Correct solution
	$a = 750$ $r = -\frac{300}{750}$ $r = -\frac{2}{5}$	1 Mark Finds the correct value of \boldsymbol{r}
	$S = \frac{a}{1 - r}$	
	$S = \frac{750}{1 - \left(-\frac{2}{5}\right)}$ $S = \frac{3750}{7}$	
Q16	a = 48 (1) ar = m (2) $ar^{2} = n$ (3) $ar^{3} = 750$ (4)	2 Marks Correct solution 1 Mark
	Sub (1) into (4) $48r^{3} = 750$ $r^{3} = \frac{125}{8}$	Finds the correct value of r
	$r = \sqrt[3]{\frac{125}{8}}$ $r = \frac{5}{2}$	
	$m = 48 \times \frac{5}{2}$ $m = 120$ $n = 48 \times \left(\frac{5}{2}\right)^{2}$ $n = 300$	

Q17a	[(T	2 Marks
	$\int (5x+3)^{19} dx$ $= \frac{(5x+3)^{20}}{20 \times 5} + C$ $= \frac{(5x+3)^{20}}{100} + C$	Correct solution
	$=\frac{(5x+3)^{20}}{1+C}$	
	$\frac{20 \times 5}{(5 \times 1.3)^{20}}$	1 Mark
	$=\frac{(3x+3)^{2}}{100}+C$	Correct integration without C
	100	without C
Q17b	$\int \left(2x^3 + \frac{1}{3x+1}\right) dx$	2 Marks
		Correct solution
	$= \frac{2x^4}{4} + \frac{1}{3}\ln 3x + 1 + C$ $= \frac{x^4}{2} + \frac{1}{3}\ln 3x + 1 + C$	1 Mark
	$\begin{bmatrix} 4 & 3 \\ x^4 & 1 \end{bmatrix}$	Correct integration of
	$=\frac{1}{2}+\frac{1}{3}\ln 3x+1 +C$	1
		3 <i>x</i> +1
Q17c	$\int \left(\sin 10x - \frac{2}{e^{5x}}\right) dx$	2 Marks
		Correct solution
	$= \int (\sin 10x - 2e^{-5x}) dx$	1 Mark
	$\frac{1}{1}$ $\frac{1}$	Correct integration of
	$= -\frac{1}{10}\cos 10x - \left(-\frac{2}{5}e^{-5x}\right) + C$	$\sin 10x$ or $\frac{2}{e^{5x}}$
	$=\frac{2}{5e^{5x}}-\frac{1}{10}\cos 10x+C$	e^{5x}
	5634 10	
Q18a	$y = e^{2x} \cos x$	2 Marks
	$\frac{dy}{dx} = e^{2x} \times -\sin x + 2e^{2x}\cos x$	Correct solution
	$\begin{vmatrix} dx \\ dy \end{vmatrix}$	1 Mark
	$\frac{dy}{dx} = -e^{2x}\sin x + 2e^{2x}\cos x$	Makes significant
	$\frac{dy}{dx} = e^{2x}(2\cos x - \sin x)$	progress
	dx	
Q18b	At x = 0	2 Marks
	$m_T = e^{2\times 0} \times (2\cos 0 - \sin 0)$	Correct solution
	$m_T = e^{-\epsilon} \times (2\cos\theta - \sin\theta)$ $m_T = 2$	1 Mark
		Finds the gradient of
	$y = e^0 \times \cos 0$	the tangent
	y = 1	
	Equation of tangent	
	y - 1 = 2(x - 0)	
	y-1=2x	
	2x - y + 1 = 0	
Q19a	8 years at 6% gives the factor of 6.2098	2 Marks
	2 / 22.2 2.2 3.7 8.7 23 4.10 10000. 0. 0.120 70	Correct solution
	$PVA = 7500 \times 6.2098$	
	PVA = \$46573.50	1 Mark
Q19b	Let M be the yearly repayments.	Correct PVA factor value 2 Marks
4135	5 years at 8% gives the factor of 3.9927	Correct solution
	, -	
	3.9927M = 12000	1 Mark
	$M = \frac{12000}{3.9927}$	Establishes $3.9927M = 12000$
	$M = $3005.48501 \dots$	3.992/M = 12000
	M = \$3005.49	

020	f() 43 2	2.845-4-5
Q20	$f'(x) = 4x^3 - 3$	2 Marks Correct solution
	$f(x) = \int (4x^3 - 3)dx$	Correct solution
	$f(x) = \int (4x^3 - 3)dx$ $f(x) = \frac{4x^4}{4} - 3x + C$	1 Mark
	$f(x) = \frac{1}{4} - 3x + C$	Correct primitive
	$f(x) = x^4 - 3x + C$	function
	(4.2)	
	At $(-1,2)$	
	$2 = (-1)^4 - 3(-1) + C$ 2 = 1 + 3 + C	
	C = -2	
	$f(x) = x^4 - 3x - 2$	
Q21	$\int_0^2 \sqrt{4x+1} dx$	3 Marks
	$\int_{0}^{\infty} \sqrt{4x+1}dx$	Correct solution
	\int_{0}^{2} 1	
	$=\int_{0}^{\infty} (4x+1)^{2}dx$	2 Marks
	$\begin{bmatrix} 50 \\ 1 \end{bmatrix}$	Makes significant
	$=\left \frac{(4x+1)^{2}}{}\right $	progress
	$\left \begin{array}{c} \frac{3}{2} \times 4 \end{array} \right $	1 Morle
	$= \int_0^2 (4x+1)^{\frac{1}{2}} dx$ $= \left[\frac{(4x+1)^{\frac{3}{2}}}{\frac{3}{2} \times 4} \right]_0^2$ $= \left[\frac{(4x+1)^{\frac{3}{2}}}{6} \right]_0^2$	1 Mark Correct integration
	$\left (4x+1)^{\frac{3}{2}} \right $	Correct integration
	$=$ ${6}$	
	$\begin{bmatrix} L & J_0 \\ 3 & 3 \end{bmatrix}$	
	$= \frac{(4 \times 2 + 1)^{\frac{3}{2}}}{6} - \frac{(4 \times 0 + 1)^{\frac{3}{2}}}{6}$ $= \frac{27}{6} - \frac{1}{6}$ $= \frac{13}{3}$	
	=	
	$=\frac{27}{-1}$	
	6 6	
	$=\frac{13}{3}$	
	3	
Q22	$4\cos^2 x - 3 = 0$	3 Marks
	$\cos^2 x = \frac{3}{4}$	Correct solution
	•	
	$\cos x = \pm \frac{\sqrt{3}}{2}$	2 Marks
	5π π π 5π	Makes significant
	$x = -\frac{5\pi}{6}, -\frac{\pi}{6}, \frac{\pi}{6}, \frac{5\pi}{6}$	progress
	0 0 0 0	1 Mark
		Correctly obtains
		-
		$\cos x = \pm \frac{\sqrt{3}}{2}$
Q23	0.24 + 0.2 + m + 0.4 = 1	3 Marks
	m = 0.16	Correct solution
	T(I) an and an	
	$E(X) = 20 \times 0.24 + 21 \times 0.2 + 22 \times 0.16 + 23 \times 0.4$	2 Marks
	E(X) = 21.72	Makes significant
	$Var(X) = E(X^2) - [E(X)]^2$	progress
	$Var(X) = E(X) - [E(X)]$ $Var(X) = 20^{2} \times 0.24 + 21^{2} \times 0.2 + 22^{2} \times 0.16 + 23^{2} \times 0.4$	1 Mark
	-21.72^{2}	Finds the correct value
	Var(X) = 1.4816	of m
		J
Q24a	$y = \log_e(2^{2.5} - 2.5)$	1 Mark
	$y = 1.14957 \dots$	Correct solution
	y = 1.150	

Q24b	h = 0.5	2 Marks
	$A = \int_1^3 \log_e(2^x - x) dx$	Correct solution
	$A = \int_1^{\log_e(2^ x) dx}$	
	0.5	1 Mark Makes significant
	$A \approx \frac{0.5}{2} (0 + 1.609 + 2 \times (0.284 + 0.693 + 1.150))$	progress
	$A \approx 1.46575$	p. 68. 633
Q25a	Linear, strong, positive	1 Mark
		Correct solution
Q25b	Calculator – stat mode	2 Marks
	$y = A + Bx$ $A = 2.5920 \dots$	Correct solution
	$B = 1.4371 \dots$	1 Mark
	y = 1.4x + 2.6	Makes significant
		progress
	Or 5.5.4	
	$m = \frac{5.5 - 4}{2 - 1} = 1.5$	
	y-4=1.5(x-1)	
	y = 1.5x + 2.5	
Q25c	$y = 1.4 \times 2.2 + 2.6$ Or $y = 1.5 \times 2.2 + 2.5$	1 Mark
	$y = 5.68 kg \qquad \qquad y = 5.8 kg$	Correct solution
Q25d	There could be a point where fertiliser will not produce extra yield.	1 Marks
	Reasons could include: high volume of fertiliser may cause damage to	Correct solution
	the plant; other factors may limit yield, eg sunlight/water; plants may	
	not be able to absorb fertiliser at that rate.	
Q26a	$y = 3x - x^3 - 1$	3 Marks
	$y' = 3 - 3x^2$	Correct solution
	y'' = -6x	2 Marks
	For stationary points, $y' = 0$	Finds the coordinates of
	$3 - 3x^2 = 0$	all the stationary points
	$x^2 = 1$	
	$x = \pm 1$	1 Mark
	x = 1	Finds the correct values
	$y = 3 \times 1 - 1^3 - 1$	of <i>x</i> for the stationary points
	y = 1	pomes
	$y'' = -6 \times 1$	
	y'' = -6	
	y'' < 0	
	\therefore (1, 1) is a maximum turning point.	
	x = -1	
	$y = 3 \times (-1) - (-1)^3 - 1$	
	y = -3	
	$y'' = -6 \times -1$	
	y'' = 6	
	y'' > 0	
	\therefore $(-1, -3)$ is a minimum turning point.	

026h	y'' = -6x	1 Mark
Q26b	$y'' = -6x$ $-6x = 0$ $x = 0$ $y = 3x - x^3 - 1$ $y = -1$	1 Mark Correct solution
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Since there is a change in concavity, therefore $(0,-1)$ is a point of inflection.	
Q26c	(-3, 17) 18 y	2 Marks Correct solution
	16 14 12 10 10 10 10 10 10 10 10 10 10 10 10 10	1 Mark Correct sketch showing some key features
	6-4-	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Q26d	The maximum value of y is 17 in the domain of $-3 \le x \le 2$.	1 Mark Correct solution
Q27a	2.5% is a 2 z -score above the mean $68.95+2\times18.45=105.85$ grams 2.5% of this population consumed more than 105.85 grams of chocolate per person per day.	1 Mark Correct solution
Q27b	$z = \frac{50.5 - 68.95}{18.45}$ $z = -1$	2 Marks Correct solution
	$\begin{vmatrix} \frac{1}{2}(100\% - 68\%) \\ = 16\% \end{vmatrix}$	1 Mark Correct z score calculated
	100% - 16% = 84% $\therefore 84\%$ of people consumed more than 50.5 grams of chocolate per person per day.	

	127 (00"	
Q27c	$z = \frac{13.6 - 68.95}{18.45}$	2 Marks
	$\begin{vmatrix} 18.45 \\ z = -3 \end{vmatrix}$	Correct solution
		1 Mark
	$\frac{1}{2}(100\% - 99.7\%)$	Makes significant
		progress
	= 0.15%	
	0.15% represents 6 people	
	0.13% represents o people	
	6	
	0.15%	
	= 4000	
	\therefore Sample size is 4000 people.	
Q28a	C8	2 Marks
Q28a	$k(64-x^2)=1$	Correct solution
	J ₀	Correct solution
	$ k 64x - \frac{x^3}{2} = 1$	1 Mark
	$\begin{bmatrix} 1 & 3 \end{bmatrix}_0$	Correct primitive
	$\int_{0}^{8} k(64 - x^{2}) = 1$ $k \left[64x - \frac{x^{3}}{3} \right]_{0}^{8} = 1$ $k \left[64 \times 8 - \frac{8^{3}}{3} - 0 \right] = 1$	function
	1024	
	$k \times \frac{1024}{\frac{3}{1024}} = 1$ $k = \frac{3}{1024}$	
	3	
	$k = \frac{1024}{1024}$	
Q28b	$f(x) = \begin{cases} \frac{3}{1024} (64 - x^2) & \text{for } 0 \le x \le 8\\ 0 & \text{otherwise} \end{cases}$	2 Marks
	$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0$	Correct solution
		1 Mark
	$F(x) = \int_0^x \frac{3}{1024} (64 - x^2) dx$	Correct primitive
	$\int_{0}^{\infty} \frac{1024}{1024} (64 - x^{2}) dx$	function
	$F(x) = \frac{3}{1024} \left[64x - \frac{x^3}{3} \right]_0^x$ $F(x) = \frac{3}{1024} \left[64x - \frac{x^3}{3} \right]_0^x$	
	$\left[\frac{r(x) - 1024}{1024} \left[\frac{04x - 3}{3} \right]_{0} \right]$	
	$3 \left[(x^3)^x \right]$	
	$F(x) = \frac{1024}{1024} \left 64x - \frac{3}{3} \right _{0}$	
	$\frac{1}{2}$ $\frac{1}$	
	$F(x) = \frac{3}{1024} \left(64x - \frac{x^3}{3} \right)$	
	$F(x) = \frac{3x}{16} - \frac{x^3}{1024}$	
	$r(x) = \frac{1}{16} - \frac{1}{1024}$	
	(0 ~~<0	
	$\therefore F(x) = \begin{cases} 0 & x < 0 \\ \frac{3x}{16} - \frac{x^3}{1024} & 0 \le x \le 8 \\ 1 & x > 8 \end{cases}$	
	$: F(x) = \begin{cases} \frac{3\pi}{16} - \frac{\pi}{1024} & 0 \le x \le 8 \end{cases}$	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
Q28c	$P(X > 5) = 1 - P(X \le 5)$	1 Mark
	P(X > 5) = 1 - F(5)	Correct solution
	$P(X > 5) = 1 - V(3)$ $P(X > 5) = 1 - \left(\frac{3}{16} \times 5 - \frac{5^3}{1024}\right)$	
	189	
	$P(X > 5) = \frac{189}{1024}$	
	$P(X > 5) = 0.184570 \dots$	
	P(X > 5) = 0.1846 (4 sig figs)	

Q29a	$y_1 = 5 - x$	1 Mark
	$y_2 = \frac{4}{2x - 1}$	Correct solution
	$\int_{0}^{y_{2}} -2x-1$	
	Sub x = 1	
	$y_1 = 5 - 1 = 4$	
	$y_1 = 5 - 1 = 4$ $y_2 = \frac{4}{2 \times 1 - 1} = 4$	
	$y_1 = y_2$	
	6 h 4 5	
	Sub $x = 4.5$ $y_1 = 5 - 4.5 = 0.5$	
	$y_1 = 5 - 4.5 = 0.5$ $y_2 = \frac{4}{2 \times 4.5 - 1} = 0.5$	
	$y_1 = y_2$ 2 × 4.5 – 1	
	71 72	
	Or solve simultaneously	
	$5-x=\frac{4}{2x-1}$	
	$ \begin{vmatrix} (3-x)(2x-1) - 4 \\ (10x-5-2x^2+x=4) \end{vmatrix} $	
	$-2x^2 + 11x - 5 - 4 = 0$	
	$2x^2 - 11x + 9 = 0$ (2x - 9)(x - 1) = 0	
	x = 1, x = 4.5	
Q29b	, (4.5 / 4) ,	3 Marks
	$A = \int_{1}^{4.5} \left(5 - x - \frac{4}{2x - 1}\right) dx$	Correct solution
	$A = \left[5x - \frac{x^2}{2} - 2\ln 2x - 1 \right]_1^{4.5}$	2 Marks
	$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}_1$	Correct primitive
	$A = \left(5 \times 4.5 - \frac{4.5^2}{2} - 2\ln 2 \times 4.5 - 1 \right)$	function
	$\begin{pmatrix} 1^2 & 1^2 & \dots \end{pmatrix}$	1 Mark
	$-\left(5 \times 1 - \frac{1^2}{2} - 2\ln 2 \times 1 - 1 \right)$	Expresses area correctly
	$A = \left(\frac{99}{8} - 2\ln 8\right) - \left(\frac{9}{2} - 2\ln 1\right)$	using the definite integral
		integral
	$A = \left(\frac{63}{8} - 2\ln 8\right) \ units^2$	
Q30a	This is an AP: $a = 24$, $d = 5$	1 Mark
	$T_8 = 24 + (8 - 1) \times 5$	Correct solution
	$T_8 = 59$	
O20h	$24 \pm (n-1) \times 5 \times 150$	2 Marks
Q30b	$24 + (n-1) \times 5 > 150$ 24 + 5n - 5 > 150	2 Marks Correct solution
	5n > 131	
	$n > \frac{131}{5}$	1 Mark
	$n > 26\frac{1}{5}$	Makes significant progress
	3	F. 20. 223
	n = 27	
	\therefore The 27 th row is the first row to contain more than 150 rose plants.	

arks
rect solution
ark
kes significant
gress
-
ark
rect solution
arks
rect solution
ark
kes significant
gress
j. 200
arks
rect solution
ark
rect graph with
ne key features
wn
ark
rect solution
ke kr

Q31e	$\frac{dx}{dt} = 2 - 4\cos 2t$ $x = \int (2 - 4\cos 2t)dt$	2 Marks Correct solution
	$x = \int (2 - 4\cos 2t)dt$ $x = 2t - 2\sin 2t + C$	1 Mark
	t = 0, x = 3	Correct primitive function
	$3 = 0 - 2\sin 0 + C$ $C = 3$	
	$x = 2t - 2\sin 2t + 3$	
	When $t = \pi$ $x = 2\pi - 2\sin 2\pi + 3$ $x = 2\pi + 3$	
	The displacement of this particle is $2\pi + 3$ metres to the right of the origin when $t = \pi$.	
Q32a	Perimeter is $2h + 2r + \pi r$ $16\pi = 2h + 2r + \pi r$	1 Mark Correct solution
	$2h = 16\pi - 2r - \pi r$ $h = 8\pi - r - \frac{1}{2}\pi r$	
	2	
Q32b	$A = 2rh + \frac{1}{2}\pi r^{2}$ $A = 2r\left(8\pi - r - \frac{\pi r}{2}\right) + \frac{\pi r^{2}}{2}$ $A = 16\pi r - 2r^{2} - \pi r^{2} + \frac{\pi r^{2}}{2}$ $A = 16\pi r - 2r^{2} - \frac{\pi r^{2}}{2}$	1 Mark Correct solution
	$A = 2r\left(8\pi - r - \frac{\pi r}{2}\right) + \frac{\pi r^2}{2}$	
	$A = 16\pi r - 2r^2 - \pi r^2 + \frac{\pi r^2}{2}$	
	$A = 16\pi r - 2r^2 - \frac{\pi r^2}{2}$	
Q32c	$\frac{dA}{dr} = 16\pi - 4r - \pi r$	3 Marks Correct solution
	$\left \frac{dA}{dr} = 0 \right $	2 Marks
	$16\pi - 4r - \pi r = 0$ $4r + \pi r = 16\pi$	Finds the exact value of r
	$r(4+\pi) = 16\pi$ $r = \frac{16\pi}{4+\pi}$	1 Mark
		Correct differentiation
	$\frac{d^2A}{dr^2} = -4 - \pi$ $\frac{d^2A}{dr^2} < 0$	
	$\left \frac{d^{-A}}{dr^2} < 0 \right $	
	$\therefore r = \frac{16\pi}{4+\pi} \text{ produces a maximum area.}$	
Q32d	$A = 16\pi \times \left(\frac{16\pi}{4+\pi}\right) - 2 \times \left(\frac{16\pi}{4+\pi}\right)^2 - \frac{\pi \times \left(\frac{16\pi}{4+\pi}\right)^2}{2}$ $A = 176.8946 \dots$ $A = 176.9 m^2$	1 Mark Correct solution
	\therefore maximum area of this window is $176.9\ m^2$	