

CARINGBAH HIGH

2020 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- · Write using black pen
- · Calculators approved by NESA may be used
- Reference sheet is provided
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks: 100

Section I - 10 marks (pages 2-4)

- Attempt Questions 1–10
- Allow about 15 minutes for this section.

Section II – 90 marks (pages 5-22)

- Attempt Questions 11-40
- Allow about 2 hours and 45 minutes for this section

Section I			Section II		_	Total	
Q1-10	Q11-17	Q18-23	Q24-30	Q31-36	Q37-40	Iotai	
							%
/10	/17	/21	/19	/18	/15	/100	70

Section I

10 marks

Attempt Question 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

- 1) If $\cos \theta = -\frac{12}{13}$ and $180^{\circ} \le \theta \le 360^{\circ}$, then $\cot \theta =$
 - A) $-\frac{5}{12}$

B) $-\frac{12}{5}$

C) $\frac{5}{12}$

- D) $\frac{12}{5}$
- 2) What are the asymptotes of the graph of $y = \frac{1}{x^2 9}$
 - A) $x = \pm 3$

B) $x = \pm 9$

C) $y = \pm 3$

- D) $y = \pm 9$
- 3) For the function $f(x) = \frac{x^3}{3} 5x^2 + 2x + 10$, the gradient is -14 at two points. What are the values of the x-coordinates at these points?
 - A) -8, 2

B) 8, 2

C) 8, -2

D) -8, -2

- What is the domain of the function $f(x) = \sqrt{x} + \frac{1}{\sqrt{2-x}}$? 4) [0, 2)B) (0, 2)A) [0, 2](0, 2]D) C) If the z scores on an examination are normally distributed and $P(z \le N) = 0.6$ for some 5) number N, what is the value of $P(-N \le z \le N)$? A) 0.1 B) 0.3 0.4 C) 0.2 D) What is the change in amplitude and period when the function $f(x) = \frac{1}{2}\sin 4x$ is 6) transformed into $g(x) = \sin 2x$? The amplitude is halved and the period A) The amplitude is halved and the B) is doubled. period is halved The amplitude is doubled and the period The amplitude is doubled and the D) C) is doubled period is halved Which statement is true for an ungrouped data set with no outliers? 7) A) The largest possible range is B) The largest possible range is
 - 2 times the IQR
- 3 times the IQR
- C) The largest possible range is 4 times the IQR
- The largest possible range is D) 5 times the IQR

- 8) Which line is perpendicular to 3x + 4y + 7 = 0?
 - A) 4x + 3y 7 = 0

B) 3x - 4y + 7 = 0

C) 8x - 6y - 7 = 0

D) 4x-7y+7=0

- 9) What is the derivative of 3^{4x+5} ?
 - A) $\ln 3 \times 4 \times 3^{4x+5}$

B) $(4x+5)\times 3^{4x+5}$

C) $\ln 3 \times 3^{4x+5}$

- D) $4 \times 3^{4x+5}$
- 10) What is the value of $\ln 2 + \ln 4 + \ln 8 + ... + \ln 2^{2n}$?
 - A) $n^2 \ln 2$

B) $n(n+1)\ln 2$

C) $n(n+2) \ln 2$

D) $n(2n+1) \ln 2$

End of Section I

2020 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Advanced Section II Answer Booklet

90 marks Attempt Questions 11–40 Allow about 2 hours and 45 minutes for this section

Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Question 11 (2 marks)

Find the values of a and b (in simplified form) such that

$\frac{3}{4-\sqrt{2}}=a+\sqrt{b}$	2
	••••
	•••••

Question 12 (2 marks)

Find the value of θ , correct to the nearest minute

NOT TO SCALE

2

Question 13 (4 marks)

The diagram below shows the graph of $y = x^2 - x - 6$.

(a) What is the coordinate of A?

(b) Find the area bounded by the x-axis and the curve $y = x^2 - x - 6$ for the interval $0 \le x \le 6$.

Question 14 (3 marks)

Differentiate

(a	(a) $y = x^2 e^x$	1
••••••		

(b)
$$f(x) = \frac{e^x + 1}{2x}$$

Question 15 (2 marks)

Use two applications of the trapezoidal rule to find an approximation to the area given in the diagram.

2

 	 	 •••••

Question 16 (2 marks)

In the diagram, ABC is a triangular airfield with AB = BC = 6.4 km. The bearing of B from A is 140° and the bearing of C from B is 032° .

(a)	Show that $\angle ABC = 72^{\circ}$.	L -
		-
(b)	Find the area of the airfield, correct to the nearest square kilometre.	L
		··•
	17 (2 marks) ve $ 2\cos x - 1 = 1$ for $0 \le x \le \pi$	2

Question	18	(6	marks)
----------	----	----	--------

Consider the curve $y = 2x^3 - 9x^2 + 12x$.

(a) Find the coordinates of the stationary points and determine their nature.	3
	•
	•••••
	•••••
3	
(b) Show that a point of inflection occurs at $x = \frac{3}{2}$.	1
	· ****

The graph of the function f is shown in the diagram above. The shaded areas are bounded by y = f(x) and the x axis. The shaded area A is 8 square units, the shaded area B is 3 square units and the shaded area C is 1 square unit.

Evaluate	$\int_{-2}^5 f(x) \ dx.$				
		 	 	 	•••

Question 20 (5 marks)

NOT TO SCALE

The diagram shows the curves $y=2-\frac{3}{x}$ and y=x-2 for $x \ge 0$.

(a) Find the coordinates of the two points P and Q where the two curves interse	ct. 2
	•••••
	•
(b) Hence, find in simplest form, the area of the shaded region contained between the two curves.	3 3
the two curves.	

Oue	stion	21	(3	marks)	Ì

(a) Show that $\log_x 2 = \frac{1}{\log_2 x}$.
(b) Solve the equation $\log_2 x = 4\log_x 2$
Question 22 (2 marks)
The completion times for the Oztown triathlon race were normally distributed with mean times 60 minutes and standard deviation 5 minutes. Using the empirical rule, find Ozzie's completion time if he finished ahead of 84% of competitors.

Question 23 (4 marks)

The discrete random variable X has a mean of 2 and probability distribution

х	1	2	3	4
p(x)	0.3	0.45	а	b

	(a) Show that the two equations in terms of a and b are	
	a + b = 0.25	2
	3a + 4b = 0.8	2
	(b) Hence find the values of a and b .	2
	(b) Hence that the variets of a and b.	2

••••		***************************************
Oues	estion 24 (2 marks)	
Z	2 (2	
	Consider the function $f(x) = e^x$ and $g(x) = \ln(x-2)$.	_
	(a) Find the composite function $f(g(x))$.	1
	(b) Find the interval notation for the range of the composite function	on. 1
	(0) That the interval notation for the range of the composite function	/M. I

Question 25 (2 marks)

	If .	<i>y</i> = <i>x</i>	sin 2 <i>x</i>	, find	$\frac{dy}{dx}$						•••••					2
Quest	The	e tablo	e belo	w sho			ish ma							(y) for	r a class	
			A 67	B 61	C 65	D 67	E 75	75	G 69	H 85	I 85	J 89	<i>K</i>	L 80		
		у	58	64	66	68	70	72	72	76	80	82	84			
	(a)						efficie orrelat							A to K	•	2
	(b)						nark o	f stud	ent L .						nts A to	2
					•••••	••••										
				••••••								••••••				

Question 27 (2 marks)

If $y = \frac{e^x}{x+}$	$\frac{1}{1}$, find $\frac{dy}{dx}$.		2
		 	· · · · · · · · · · · · · · · · · · ·
Question 28 (2 ma	arks)		
Find $\int \tan^2$	x dx		2
Question 29 (2 ma	rks)		
Evaluate	$\int_0^2 x (x^2 - 4)^3 \ dx$		2

Question 30 (5 marks)

	length $2x$ metres, width x metres and height h metres.							
	(a) Show that the area $A \text{ m}^2$ of metal required is given by $A = 4x^2 + \frac{27}{x}$.	2						
	(b) Hence find the minimum area of metal required.	3						
••••								
•••••		•••••						
		,						
		••••						
•••••								
••••								
•••••								
•••••								
••••								

A metal crate of fixed volume 9 m³ is to be made in the shape of a rectangular prism with

Question 31 (3 marks)

At time (t hours) after 12:00 am, the height (h metres) of the deck of	
of the jetty is given by $h = 2\cos\left(\frac{4\pi}{25}t\right) + 1$. Find, correct to the near	erest minute, the first
time after 12:00 am when the deck of the boat is level with the jetty	<i>7</i> . 3
	•

The function $f(x) = x^2$ is transformed into a new function whose graph is shown in the diagram below.

NOT TO SCALE

Find the equation of the new function in the form g(x) = k f(x+b) + c for some constants k, b and c.

 ••••	•••••	
 •••••		

(a) On the number plane below, draw the graphs of $y = \cos \pi x$ and y = 1 - |x| for $-3 \le x \le 3$.

(b) Hence find the number of solutions of the equation $\cos \pi x = 1 - |x|$ in the domain $(-\infty, \infty)$.

1	
L	

-

Question 34 (3 marks)

If $y = \tan^2 x$, find the values of the constants a and b, such that $\frac{d^2y}{dx^2} = ay^2 + by + 2$.

Question 35 (3 marks)

	The continuous random variable X has probability density function $f(x) = \frac{1}{2} \sin x$	
	for $0 \le x \le \pi$.	
	(a) Find the cumulative distributive function (CDF)	2
		••••
		••••
		-
••••		
		4
	(b) Find the first quartile of the distribution.	1
	·	•••
Questi	ion 36 (3 marks)	
	(a) Differentiate $x \log_e x$.	1
		-
•••••		
	(b) Hence or otherwise, evaluate (in exact form), $\int_{1}^{2} \log_{e} x dx$.	2
••••		
••••		

Question 37 (4 marks)

	At time t years after it was purchased the value \$V\$ of a car is given by $V = 25~000e^{-0.5t}$.	
	(a) Find the loss in value of the car during the third year.	1
	(b) Find the year in which the car is losing value at a rate of \$100 per year.	2
Questi	on 38 (2 marks)	
	The first term of a geometric series is 16 and the fourth term is $\frac{1}{4}$.	
	(a) Find the common ratio.	1
		••••
•••••	(b) Find the limiting sum of the series.	1
	······································	

Question 39 (5 marks)

A particle is moving in a straight line. At time t seconds it has a displacement x metres from a fixed point O on the line, velocity v ms⁻¹, and acceleration a ms⁻² is given by a = 6t - 12. Initially, the particle is at rest at O.

(a) Find expressions for v and x in terms of t .	3
	-
(b) Find when and where the particle is next at rest.	2
	
	••••
	••••

Question 40 (5 marks)

The diagram shows the graph of the curve $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

(a) Show that the shaded region bounded by the curve, the x axis and the line

$$x = k$$
, where $k > 0$, has area $\ln\left(\frac{e^k + e^{-k}}{2}\right)$.

CARINGBAH HIGH

2020 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- · Reference sheet is provided
- For questions in Section II, show relevant mathematical reasoning and/or calculations

Total marks: 100

Section I – 10 marks (pages 2-4)

- Attempt Questions 1–10
- Allow about 15 minutes for this section

Section II – 90 marks (pages 5-22)

- Attempt Questions 11–40
- Allow about 2 hours and 45 minutes for this section

			Marker's	Use Only			
Section I			Section II	ii e	Total		
Q1-10	Q11-17	Q18-23	Q24-30	Q31-36	Q37-40	Total	
					9		%
/10	/17	/21	/19	/18	/15	/100	

Section I

10 marks

Attempt Question 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1-10.

1) If $\cos \theta = -\frac{12}{13}$ and $180^{\circ} \le \theta \le 360^{\circ}$, then $\cot \theta =$

A) $-\frac{5}{12}$

B) $-\frac{12}{5}$

C) $\frac{5}{12}$

 $\begin{array}{c} \hline D) & \frac{12}{5} \\ \hline \end{array}$

- 2) What are the asymptotes of the graph of $y = \frac{1}{x^2 9}$
 - $(A) \qquad x = \pm 3$

- B) $x = \pm 9$
- $x^{2}-9=0$ (x-3)(x+3)=0 $x=\pm 3$

C) $y = \pm 3$

- D) $y = \pm 9$
- For the function $f(x) = \frac{x^3}{3} 5x^2 + 2x + 10$, the gradient is -14 at two points. What are the values of the x-coordinates at these points?
 - 2=10x+2=-14

A) -8, 2

- B) 8, 2
- x2-10x+16=0.

C) 8, -2

- D) -8, -2
- x=8,2

4)

C) (0, 2]

- [0, 2]D)
- If the z scores on an examination are normally distributed and $P(z \le N) = 0.6$ for some 5) number N, what is the value of $P(-N \le z \le N)$?
 - A) 0.1

P(-NEZEN) = 2P(OEZEN) = 2 {P(ZEN)-0.5} 0.3 B)

0.2

- = 2(0.6-0.5) D) = 2(0.1) -0.2
- What is the change in amplitude and period when the function $f(x) = \frac{1}{2} \sin 4x$ is 6) transformed into $g(x) = \sin 2x$?

 Ramplitude = 1

 PEN od = TT Ranglitude = 12
 period = II
 - A) The amplitude is halved and the period is halved
- The amplitude is halved and the period B) is doubled.
- The amplitude is doubled and the C) period is halved
- D) The amplitude is doubled and the period is doubled
- Which statement is true for an ungrouped data set with no outliers? 7)
 - A) The largest possible range is 2 times the IQR
- The largest possible range is B) 3 times the IQR
- The largest possible range is C) 4 times the IQR
- The largest possible range is D) 5 times the IQR

(1.5+1+1.5) x ZOOR = 4x JOR

- 8) Which line is perpendicular to 3x + 4y + 7 = 0?
 - A) 4x + 3y - 7 = 0

- 3x 4y + 7 = 0B)
- y=-3x-7 $1.M = -\frac{3}{4}$

4y=-3x-7

- 8x-6y-7=0 by = 8x-7y = 8x - 7 y = 4x - 7the derivative of 3^{4x+5} ?
- M1=4

- What is the deri 9)
 - $\ln 3 \times 4 \times 3^{4x+5}$

 $(4x+5)\times 3^{4x+5}$ $\frac{d}{dx} = 3$ 4x+5 4x+5 4x+5

 $\ln 3 \times 3^{4x+5}$ C)

- D)
- What is the value of $\ln 2 + \ln 4 + \ln 8 + ... + \ln 2^{2n}$? 10)
 - $n^2 \ln 2$ A)

1. sam = n(1+2n)/2

 $n(n+1) \ln 2$ B)

 $n(2n+1)\ln 2$

In 2+ In 22+ In 23+ - ... + In 22n D) =12+212+312+...+21/2 =(1+2+3+...+2n) ln 2 a=1, d=1, n=2n, L=2n End of Section I 5n== (a+1) = an (1+2n) = n((+2n)

2020 HIGHER SCHOOL CERTIFICATE TRIAL EXAMINATION

Mathematics Advanced Section II Answer Booklet

90 marks Attempt Questions 11-40 Allow about 2 hours and 45 minutes for this section

Instructions

- Answer the questions in the spaces provided. Sufficient spaces are provided for typical responses.
- Your responses should include relevant mathematical reasoning and/or calculations.
- · Extra writing space is provided at the back of this booklet. If you use this space, clearly indicate which question you are answering.

Find the values of a and b (in simplified form) such that

3 ×4+52 4-52 4+52	$\frac{3}{4-\sqrt{2}} = a + \sqrt{b}$	
4-52 4+52	$a = \frac{6}{7} \int_{14}^{6} 3 \int_{2}^{2}$	
	7) 14	
=12+352	b=(35)2	
16-4	114'	
1.5 (5.	= 9x2	
= 12+352	196	
	= 18	
$=\frac{6}{7}+\frac{3}{14}\sqrt{2}$	96	
1	1.6=9	
	98	

Question 12 (2 marks)

Find the value of θ , correct to the nearest minute

NOT TO SCALE

 $\cos \theta = \frac{16^{2} + 20^{2} - 12^{2}}{2 \times 16 \times 20}$ = 45.

 $0 = \cos^{1}\left(\frac{4}{5}\right)$ $= 36^{\circ}52^{-1}$

Question 13 (4 marks)

The diagram below shows the graph of $y = x^2 - x - 6$.

(a) What is the coordinate of A?

1

(x-3) by 2) = 0.

X = 3, -2

LA(3,0)

3

(b) Find the area bounded by the x-axis and the curve $y = x^2 - x - 6$ for the interval $0 \le x \le 6$.

 $A = \int_{3}^{6} (x^{2} - x - 6) dx + \int_{0}^{3} (x^{2} - x - 6) d$

-18 +27 +27 2 2

= 45u²

Differentiate

(a) $y = x^2 e^x$	1
u= x2ex + 2xex	
-x0x(x+2)	

Question 15 (2 marks)

Use two applications of the trapezoidal rule to find an approximation to the area given in the diagram.

2

Question 16 (2 marks)

NOT TO SCALE

In the diagram, ABC is a triangular airfield with AB = BC = 6.4 km. The bearing of B from A is 140° and the bearing of C from B is 032° .

(a) Show that $\angle ABC = 72^{\circ}$.

1

2

LABC = LABN + LNBC alt. 25=, 11 lines)

(b) Find the area of the airfield, correct to the nearest square kilometre. 1 A = 1 X 6.4 X 6.4 Si 172

Question 17 (2 marks)

 $|2\cos x - 1| = 1$ for $0 \le x \le \pi$ 2 cosx-1=1 or 2ecsx-1=-1

2 cosx = 2 2 2 cosx = 0

Question 18 (6 marks)

Consider the curve $y = 2x^3 - 9x^2 + 12x$.

(a) Find the coordinates of the stationary points and determine their nature.

3

y=6x2-18x412	95ub x=2, y11 = 6
y=0, stat pt	>o, min.
6x2-18x+12=0.	
x-3x+2=0.	: (1,5) is a max & (2,4)
(x-2)(x-1) = 0	is a min stationary poin
x=1,2.	
seb x=1, y=5	
sub $x=2$, $y=4$	
: (15) \$ (2,4)	
y'' = 12x - 8	
sub $x=1$, $g''=-6$	
<0, nax)	
1	

(b) Show that a point of inflection occurs at $x = \frac{3}{2}$.

1

y'' = 0, $12x - 8 = 0$.
12x=8
N = 8/12
$\chi = \frac{3}{2}$

	×	1. 22	1.5	1.75	
- 2 1	311	-3	0	3	

: change in concavity.
: inflection point occurs at x===

Question 19 (1 mark)

The graph of the function f is shown in the diagram above. The shaded areas are bounded by y = f(x) and the x axis. The shaded area A is 8 square units, the shaded area B is 3 square units and the shaded area C is 1 square unit.

Evaluate $\int_{-2}^{5} f(x) dx$. $\int_{-2}^{5} f(x) dx = 8 - 3 + 1$ $= 6u^{2}$

Question 20 (5 marks)

NOT TO SCALE

The diagram shows the curves $y = 2 - \frac{3}{x}$ and y = x - 2 for $x \ge 0$.

(a) Find the coordinates of the two points P and Q where the two curves intersect.

(b) Hence, find in simplest form, the area of the shaded region contained between

3

- 13 -

Question 21 (3 marks)

Z
(a) Show that $\log_x 2 = \frac{1}{\log_2 x}$.
log 2 = log, 2 (change of base rule)
log X
- 10g2x
32
(b) Solve the equation $\log_2 x = 4\log_x 2$
$\log_{1} x = 4x $
10g x = 4
J2 tog2 t
$(\log_2 x)^2 = 4$
$\log_{10} x = \pm 2$
: log_x=2 & log_x=-2
$\chi = 2^{-1}$ $\chi = 2^{-2}$
$x=4$ $x=\frac{1}{4}$
Question 22 (2 marks)
The completion times for the Oztown triathlon race were normally distributed with mean times 60 minutes and standard deviation 5 minutes. Using the empirical rule, find Ozzie's completion time if he finished ahead of 84% of competitors.
50%+ 1x68% = 84% (normal distribution)
84% of the times are > µ-o
60-5 = 55 minutes
DO. 2 - 23 WHOLD

Question 23 (4 marks)

The discrete random variable X has a mean of 2 and probability distribution

x	1	2	3	4
p(x)	0.3	0.45	а	b

((a)	Show	that	the	two	equations	in	terms	of	a	and	b	are

$$a+b=0.25$$
$$3a+4b=0.8$$

2

0.3+0.45+a+b=1	10.3+2(0.45)+3a+46=2
0.75+a+b=1	10-3+0-9+3a+4b=1
atb=0.25	1-2+3a+4b=1
	3a+4b=0-8

(b)	Hence	find	the	values	of	a	and	b	

2

$$\begin{array}{c|c}
\hline
3a+4b=0.8-. & 4b=0.2 \\
\hline
0-0 & a=0.2 & b=0.05 \\
\hline
sub a=0.2 & h=0.05
\end{array}$$

Question 24 (2 marks)

Consider the function $f(x) = e^x$ and $g(x) = \ln(x-2)$.

(a) Find the composite function f(g(x)).

1

$$f(g(x)) = f(\ln(x-2))$$

$$= e^{\ln(x-2)}$$

$$= x-2, x > 2.$$

1

	A			
1	- 1 0	\		
(0 101	1		
	0,70	1		
		/	 	
	•			

If $y = x \sin 2x$, find $\frac{dy}{dx}$			2
$y' = x(2\cos 2x) + \sin 2x$ $= 2x\cos 2x + \sin 2x$	x(i)		
=2xcos2x+sin2x			
		1 - 200 1 - 1	

Question 26 (4 marks)

The table below shows the English marks (x) and the Mathematics marks (y) for a class of 12 students (A-L). Only the English mark is available for student L.

	A	В	C	D	E	F	G	Н	I	J	K	L
х	67	61	65	67	75	75	69	85	85	89	87	80
У	58	64	66	68	70	72	72	76	80	82	84	

(a) Calculate the correla Describe the nature	of the correlation	coefficient between	en x and y.	2
r=0.9	strong	positive	correlation	
)	1		

(b) Find the equation of the least squares regression line of y on x for the students A to K.Estimate the Mathematics mark of student L.

4=18+0-72x.
when x=80, y=18+0.72(80)
y=75-6
~L=76.

If $y = \frac{e^x}{x+1}$, find $\frac{dy}{dx}$. $\frac{dy}{dx} = \frac{(x+1)e^x}{(x+1)^2}$ $= \frac{xe^x}{(x+1)^2}$ $= \frac{xe^x}{(x+1)^2}$ Question 28 (2 marks) Find $\int \tan^2 x dx$ $= \int \tan^2 x dx = \int (\sec^2 x - 1) dx$ Question 29 (2 marks) Evaluate $\int_0^2 x(x^2 - 4)^3 dx$ $= \int \int x(x^2 - 4)^3 dx$ $= \int \int x(x^2 - 4)^3 dx$ $= \int \int (x^2 - 4)^4 \int dx$		
$\frac{dy}{dx} = \frac{(x+1)e^{x} - e^{x}(1)}{(x+1)^{2}}$ $= xe^{x} + e^{x} - e^{x}$ $(x+1)^{2}$ $= xe^{x}$ $(x+1)^{2}$ Question 28 (2 marks) Find $\int \tan^{2}x dx$ $\int \tan^{2}x dx$ $= \tan^{2}x dx$ $= \tan^{2}x dx$ Question 29 (2 marks) Evaluate $\int_{0}^{2}x(x^{2} - 4)^{3} dx$ $= \int_{0}^{2}x^{2}(x^{2} - 4)^{4} \int_{$	If $y = \frac{e^x}{x+1}$, find $\frac{dy}{dx}$.	2
$\frac{dx}{(x+1)^{2}} = xe^{\frac{x}{2}} + e^{\frac{x}{2}} - e^{\frac{x}{2}}$ $= xe^{\frac{x}{2}} - e^{\frac{x}{2}}$	1999(c) (2) FUR	
$= \frac{xe^{2} + e^{-e}}{(x+1)^{2}}$ $= \frac{xe^{2}}{(x+1)^{2}}$ Question 28 (2 marks) Find $\int \tan^{2}x dx$ $= \frac{1}{4} - x \cdot dx = \int (\sec^{2}x - 1) dx$ $= \frac{1}{4} - x \cdot dx = \int (\sec^{2}x - 1) dx$ Question 29 (2 marks) $= \frac{1}{4} - x \cdot dx = \frac{1}{4} - \frac$		*
Question 28 (2 marks) Find $\int \tan^2 x dx$ $= \int (\sec^2 x - 1) dx$ $= \int \tan^2 x dx$ 2 $= \int (\sec^2 x - 1) dx$ Question 29 (2 marks) Evaluate $\int_0^2 x(x^2 - 4)^3 dx$ $= \int \int (x^2 - 4)^4 \int 0$	= xe x x x x = x	
Question 28 (2 marks) Find $\int \tan^2 x dx$ $= \int (\sec^2 x - 1) dx$ $= +a_1 x - x + c$ Question 29 (2 marks) $= \frac{1}{2} \int_{0}^{2} x(x^2 - 4)^3 dx$ $= \frac{1}{2} \int_{0}^{2} x(x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} x(x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} (x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} (x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} (x^2 - 4)^4 dx$	(x+1)2	
Question 28 (2 marks) Find $\int \tan^2 x dx$ $= \int (\sec^2 x - 1) dx$ $= +a_1 x - x + c$ Question 29 (2 marks) $= \frac{1}{2} \int_{0}^{2} x(x^2 - 4)^3 dx$ $= \frac{1}{2} \int_{0}^{2} x(x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} x(x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} (x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} (x^2 - 4)^4 dx$ $= \frac{1}{2} \int_{0}^{2} (x^2 - 4)^4 dx$	- rer	-13
Find $\int \tan^2 x dx$ $= \int (\sec^2 x - 1) dx$ $= + a_1 x - x + c$ Question 29 (2 marks) $= \int (x^2 - 4)^3 dx$ $= \int (x^2 - 4)^4 \int dx$	(K+1)2	
$\int fan^{2}x dx = \int (\sec^{2}x-1) dx$ $= +anx-x+c$ Question 29 (2 marks) $= \int_{0}^{2} x(x^{2}-4)^{3} dx$ $= \int_{0}^{2} x(x^{2}-4)^{4} dx$ $= \int_{0}^{2} (x^{2}-4)^{4} dx$	Question 28 (2 marks)	
$\int fan^{2}x dx = \int (\sec^{2}x-1) dx$ $= +anx-x+c$ Question 29 (2 marks) $= \int_{0}^{2} x(x^{2}-4)^{3} dx$ $= \int_{0}^{2} x(x^{2}-4)^{4} dx$ $= \int_{0}^{2} (x^{2}-4)^{4} dx$		
$= + a_1 x - x + c$ Question 29 (2 marks) $= valuate \int_0^2 x(x^2 - 4)^3 dx$ $= \int_0^2 \lambda_1 x(x^2 - 4)^3 dx$ $= \int_0^2 \left(x^2 - 4\right)^4 \int_0^2 dx$ $= \int_0^2 \left(x^2 - 4\right)^4 \int_0^2 dx$ $= \int_0^2 \left(x^2 - 4\right)^4 \int_0^2 dx$ $= \int_0^2 \left(x^2 - 4\right)^4 - (o - 4)^4 \int_0^2 dx$	Find $\int \tan^2 x dx$	2
Question 29 (2 marks) Evaluate $\int_0^2 x(x^2-4)^3 dx$ $= \frac{1}{4} \int_0^2 \lambda x (x^2-4)^3 dx$ $= \frac{1}{4} \int_0^2 (x^2-4)^4 \int_0^2 dx$ $= \frac{1}{8} \left[(x^2-4)^4 - (o-4)^4 \right]$ $= \frac{1}{8} \left[(x^2-4)^4 - (o-4)^4 \right]$	Stantudx = S(sectx-1)dx	
Question 29 (2 marks) Evaluate $\int_0^2 x(x^2-4)^3 dx$ $= \frac{1}{4} \int_0^2 \lambda x (x^2-4)^3 dx$ $= \frac{1}{4} \int_0^2 (x^2-4)^4 \int_0^2 dx$ $= \frac{1}{8} \left[(x^2-4)^4 - (o-4)^4 \right]$ $= \frac{1}{8} \left[(x^2-4)^4 - (o-4)^4 \right]$	=tanx-x+c	
Evaluate $\int_{0}^{2} x(x^{2}-4)^{3} dx$ 2 $= \frac{1}{4} \left[(x^{2}-4)^{4} \right]^{2}$ $= \frac{1}{8} \left[(x^{2}-4)^{4} \right]^{2}$ $= \frac{1}{8} \left[(x^{2}-4)^{4} - (o-4)^{4} \right]$		
Evaluate $\int_{0}^{2} x(x^{2}-4)^{3} dx$ 2 $= \frac{1}{4} \left[(x^{2}-4)^{4} \right]^{2}$ $= \frac{1}{8} \left[(x^{2}-4)^{4} \right]^{2}$ $= \frac{1}{8} \left[(x^{2}-4)^{4} - (o-4)^{4} \right]$		
Evaluate $\int_{0}^{2} x(x^{2}-4)^{3} dx$ 2 $= \frac{1}{4} \left[(x^{2}-4)^{4} \right]^{2}$ $= \frac{1}{8} \left[(x^{2}-4)^{4} \right]^{2}$ $= \frac{1}{8} \left[(x^{2}-4)^{4} - (o-4)^{4} \right]$	Question 29 (2 marks)	
	Evaluate $\int_{-\infty}^{2} r(r^2 - 4)^3 dr$	2
$= \frac{1}{4} \left[\frac{(x^2 - 4)^4}{4} \right]_0^2$ $= \frac{1}{8} \left[(x^2 - 4)^4 \right]_0^2$ $= \frac{1}{8} \left[(x^2 - 4)^4 - (0 - 4)^4 \right]$	$\frac{1}{2} \left(\frac{1}{2} \right) = \left(\frac{1}{2} \right)^3 $	-
$= \frac{1}{8} \left[(x^{2} - 4)^{4} \right]_{0}^{2}$ $= \frac{1}{8} \left[(x^{2} - 4)^{4} - (0 - 4)^{4} \right]$	Jo XXIX-4) ax.	
$= \frac{1}{8} \left[(x^{2} - 4)^{4} \right]_{0}^{2}$ $= \frac{1}{8} \left[(x^{2} - 4)^{4} - (0 - 4)^{4} \right]$	$-\left(\left(x^{2}-4\right)^{4}\right)^{2}$	
= 8 [(2-4)4-(0-4)4]		
	$=\frac{1}{8}\left[(\chi^{2}-4)^{4}\right]_{0}^{2}$	
=\frac{8}{0-256}	= 8 (2-4) - (0-4) +	
-8 (D-256)		, , , , , , , , , , , , , , , , , , ,
	-8 (0-25b)	

A metal crate of fixed volume 9 m³ is to be made in the shape of a rectangular prism with length 2x metres, width x metres and height h metres.

(a) Show that the area A m² of metal required is given by $A = 4x^2 + \frac{27}{x}$.

V = Ah $Q = 2x^{2}h$ $Q = 2x^{2}h$ $Q = 4x^{2} + 4xh + 2xh$ $Q = 4x^{2} + 6xh$ $Q = 4x^{2} + 6xh$

h=9 = $4x^2+6xh$ D $2x^2$ sub (1) into (2)

 $A = 4x^{2} + 6x \left(\frac{9}{2x^{2}}\right)$

=4x2+27

(b) Hence find the minimum area of metal required.

 $A = 4x^{2} + 27x^{-1}$ $\frac{dA}{dx} = 8x - 27x^{-1}$

3

 $= 8x - \lambda 7 = \lambda 4$ >0, min

 $\frac{dA}{dx} = 4 \left(\frac{3}{3}\right)^{2} + \frac{17}{(3/2)}$ $8x^{3} - 27 = 0$ $mn = 4 \left(\frac{3}{3}\right)^{2} + \frac{17}{(3/2)}$

 $8x^{2}=27 = 27m^{2}$ $x^{3}=27$

 $\begin{array}{c} \chi' = \frac{27}{8} \\ \chi = 3 \\ \hline 2 \end{array}$

 $\frac{d^{2}A}{dx^{2}} = 8 + 54x^{-3}$ = 8 + 54

Question 31 (3 marks)

At time (t hours) after 12:00 am, the height (h metres) of the deck of a boat above the level of the jetty is given by $h = 2\cos\left(\frac{4\pi}{25}t\right) + 1$. Find, correct to the nearest minute, the first time after 12:00 am when the deck of the boat is level with the jetty.

h=2 cos (#++)+1

2 cos (4 tr t)+1=0

 $2\cos\left(\frac{4\pi}{25}t\right)=-1$

 $\cos\left(\frac{4\pi}{20}+\right) = -\frac{1}{2}$

4TL = 2TT 4TT

 $4 = \frac{25}{6}, \frac{25}{3}$

The function $f(x) = x^2$ is transformed into a new function whose graph is shown in the diagram below.

NOT TO SCALE

Find the equation of the new function in the form g(x) = k f(x+b) + c for some constants k, b and c.

The curve is reflected in the x-axis, dilated vertically then translated 1 unit to the left and dawn by 3 units. $\frac{g(x)=k(x+1)-3}{g(0)=-5}$ $\frac{k-3=-5}{k-2-2(x+1)^2-3}$ $\frac{g(x)=-2(x+1)^2-3}{k-3-2(x+1)^2-3}$

(a) On the number plane below, draw the graphs of $y = \cos \pi x$ and y = 1 - |x| for $-3 \le x \le 3$.

2

1

(b) Hence find the number of solutions of the equation $\cos \pi x = 1 - |x|$ in the domain $(-\infty, \infty)$.

5 times

Question 34 (3 marks)

If $y = \tan^2 x$, find the values of the constants a and b, such that $\frac{d^2y}{dx^2} = ay^2 + by + 2$.

dx = 2tan x sect

= 2 tanx + 2 tan 3 x

dry = 2 sec2x + 6+an2x secx

= 2(1+tan2x)+6+an2x(1+tan2x)

= 2+2+an x+6+an x+6+an +x

= 2+8+an2x+6+an4x

dry = 2+84+64

i-a=6, b=8

The continuous random variable *X* has probability density function $f(x) = \frac{1}{2} \sin x$ for $0 \le x \le \pi$.

(a) Find the c	cumulative distributive function (CDF)	2
(x ± s	int dt = = 2 [oost]o	· ·
10 0	$=-\frac{1}{2}\left(\cos(x-1)\right)$	

Question 36 (3 marks)

At time t years after it was purchased the value \$V\$ of a car is given by $V = 25\ 000e^{-0.5t}$.

(a) Find	the loss	in value	of the	car	during	the	third	year.
					-1			

1

2

t= 9.6566

:- during the loth you

Question 38 (2 marks)

The first term of a geometric series is 16 and the fourth term is $\frac{1}{4}$.

(a) Find the common ratio.
$$a=16$$
, $T_4=\frac{1}{4}$

1

(b) Find the limiting sum of the series.

1

= 213

A particle is moving in a straight line. At time t seconds it has a displacement x metres from a fixed point O on the line, velocity v ms⁻¹, and acceleration a ms⁻² is given by a = 6t - 12. Initially, the particle is at rest at O.

(a) Find expressions for v and x in terms of t .
a=6t-12
v=6t2-12++c
2
$V = 3L^2 - 12t + c$
when 670, 120 1000.
V=3t2-12t
x=343-12+2+c
3 7
x= t3-6t2+C
when t=0 x00: c=0
$\kappa = L^3 - 6L^2$
K=t-6t
(b) Find when and where the particle is next at rest.
At rest, v=0.
3t2-12t=0,
3t(t-4) = .
L=0,4
$\frac{1}{\sqrt{3}} \left(-\frac{1}{\sqrt{3}} \right)^2$
when $t=4$, $x=4^3-6(4)^2$
=-32
particle next at rest is when t=4sec, when
i particle next at rest is when t=4sec, when it is 32m to the left of the origin.
······································

The diagram shows the graph of the curve $y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$.

(a) Show that the shaded region bounded by the curve, the x axis and the line

x = k, where $k > 0$, ha	s area $\ln\left(\frac{e^k + e^{-k}}{2}\right)$.	2
Skex-exdx	= [In (extex)]k	
	= In(exter) - In(ete)	
	= ln(ekte-k)-ln2	. ,
2	= In (extern)	
	2	1

(b) Find, in simplest exact form, the value of k such that the shaded region has area of	
1 square unit.	3
$\ln\left(\frac{e^{k}+e^{-k}}{2}\right)=1$	
$e = e^{k} + e^{k}$	
2	
le=ek+e-k	
multiply each term by ek:	
2e(ek) = (ek) 2 (ek) (ek)	
2e(ek) = (ek)2+1	
(ek) 2-2e(ek)+1=0	
let on= ex	
m2-2em+1=0.	
m= 2e + [(-2e)2-4(1)[1)	
2(1)	
= Le = 1/4e = 4	
2	
=2e+ 2 Je=1	
2	
:- m= e+ [e]	
But m=ex	
ex=e+/e2-1	**************************************
Inex = In (et Jez-1)	
k=10(e+1e2-1	

STUDENT NAME/NUMBER:

solutions

Section I

10 Marks

Attempt Questions 1-10.

Allow about 15 minutes for this section.

Select either A, B, C or D that best answers the question and indicate your choice with a cross (X) in the appropriate space on the grid below.

$This\ page\ must\ \ {\tt be\ handed\ in\ with\ your\ answer\ booklet}.$

	A	В	С	D
1				X
2	×	2		
3		X		
4		X		8
5			X	
6				X
7			X	
8	-		X	Si .
9	×			
10				X