

2020

TRIAL – YEAR 12 HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Advanced

General Instructions

- Reading time 10 minutes
- Working time 3 hours
- Write using black pen
- Calculators approved by NESA may be used
- A reference sheet is provided at the back of this paper
- In Questions 11-16, show relevant mathematical reasoning and/or calculations

Total marks:

Section I – 10 marks (pages 2-5)

100

- Attempt Questions 1-10
- Allow about 15 minutes for this section

Section II - 90 marks (pages 6-34)

- Attempt Questions 11-16
- Allow about 2 hours and 45 minutes for this section.

Section I - 10 marks

Allow 15 minutes for this section

- 1. Which expression is equal to $\int \tan^2 x \ dx$?
 - (A) $\frac{\tan^3 x}{3} + C$
 - (B) $\tan x x + C$
 - (C) $\tan x + x + C$
 - (D) $\sec^2 x + C$
- 2. $\frac{d}{dx} \log_e \frac{4x^2 9}{2x 3}$ is equal to which of the following?
 - $(A) \quad \frac{6}{2x-3}$
 - $(B) \quad \frac{2}{2x+3}$
 - (C) $\frac{6(2x+3)}{(2x-3)^2}$
 - (D) $\frac{6(4x+1)}{(2x-3)^2}$
- 3. Which of the following could be a primitive for $f'(x) = \frac{x}{e^{x^2 8}}$?
 - (A) $-\frac{1}{2}(e^{x^2-8}) + 8$
 - (B) $\frac{1}{2} \ln(e^{x^2-8}) + 8$
 - (C) $\ln(e^{8-x^2}) 8$
 - (D) $-\frac{1}{2}(e^{8-x^2})-8$

4. For the curve shown, which inequalities are correct?

- (A) $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} > 0$
- (B) $\frac{dy}{dx} > 0$ and $\frac{d^2y}{dx^2} < 0$
- (C) $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} < 0$
- (D) $\frac{dy}{dx} < 0$ and $\frac{d^2y}{dx^2} > 0$
- 5. Results for a test are given as z-scores. In this test Angela gained a z- score of 3. The test has a mean of 55 and standard deviation of 6. What was Angela's actual mark in this test?
 - (A) 58
 - (B) 73
 - (C) 64
 - (D) 67

6. The graph with the equation $y = k(x-2)^3$ is shown below, for some positive constant k.

If the area of the shaded region is 34, what is the value of k?

- (A) $\frac{136}{15}$
- **(B)** 8
- (C) 4
- (D) $\frac{34}{9}$
- 7. The time, T, in seconds that divers can hold their breath is normally distributed with $\mu = 120$ and Var(T) = 400. In what range of time length would you expect to find the middle 95%?
 - (A) $100 \le x \le 140$
 - (B) $80 \le x \le 160$
 - (C) $60 \le x \le 180$
 - (D) $40 \le x \le 200$

- 8. The exact value of $I = \int_{1}^{2} \frac{\ln x}{x} dx = \frac{1}{2} (\ln 2)^{2}$. The approximation of I using the Trapezoidal Rule with 2 function values is
 - (A) smaller by 28%
 - (B) larger by 28%
 - (C) smaller by 72%
 - (D) larger by 72%
- 9. Given a function $f(x) = \frac{x}{x^2 5}$

Which of the following statements is true?

- (A) f(x) is even and one-to-one.
- (B) f(x) is even and many-to-one.
- (C) f(x) is odd and one-to-one.
- (D) f(x) is odd and many-to-one.
- 10. The amount M of certain medicine present in the blood after t hours is given by $M = 9t^2 t^3$ for $0 \le t \le 9$.

When is the amount of medicine in the blood increasing most rapidly?

- (A) t = 0
- (B) t = 9
- (C) t = 6
- (D) t=3

END OF SECTION I

Section II- Extended Response

Attempt Questions 11-16.

Allow about 2 hours and 45 minutes for this section.

Question 11(15 Marks)

a)	Differentiate	e the following	
	(i)	y = (4x - 5)(4x + 5)	1
			•••••

•••••	••••••••••		••••••
	(ii)	$y = \sin^2 x$	2
••••	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		*******
•••••	• • • • • • • • • • • • • • • • • • • •		••••••
	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
ь) 	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
ь) 	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2
b)	In an arithm the first 14 t	netic series, the third term is 5 and the tenth term is 26. Find the sum terms.	of 2

c) Evaluate	2	
$\int_{1}^{4} 5($	$(9x-4)^4 dx$	
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
		•••
• • • • • • • • • • • • • • • • • • • •		•••
d) Solve the fol	llowing equation for x .	2
d) Solve the fol	Howing equation for x . $e^{2x} + 3e^{x} - 10 = 0.$	2
d) Solve the fol		
	$e^{2x} + 3e^x - 10 = 0.$	
	$e^{2x} + 3e^x - 10 = 0.$	
	$e^{2x} + 3e^x - 10 = 0.$	 2
	$e^{2x} + 3e^x - 10 = 0.$	
	$e^{2x} + 3e^x - 10 = 0.$	
	$e^{2x} + 3e^x - 10 = 0$.	
	$e^{2x} + 3e^x - 10 = 0$.	•••
	$e^{2x} + 3e^x - 10 = 0.$	•••
	$e^{2x} + 3e^x - 10 = 0.$	••••
	$e^{2x} + 3e^x - 10 = 0.$	
	$e^{2x} + 3e^x - 10 = 0.$	

e)	(i)	Show that	$\frac{d}{dx}(\sec^2 x) =$	$2\tan x \sec^2 x$:.		2
••••••	••••••	•••••	***************************************	•••••		•••••	***************************************
••••••		•••••		***************************************	••••••	•••••	************
•••••	•••••	•••••	***************************************	***************************************	***************************************	•••••••	••••••
***********		•••••	*******************	******************	****************	••••••	*************
		•••••••					***************************************
************	•••••	•••••	******************	***********			
•••••	******	•••••	******************	************			
***********	•••••	••••	•••••	•••••	•••••	•••••	••••••
•••••	••••••	•••••	***************************************	***************************************	••••••	•••••	*******
•••••	•••••	•••••	•••••	••••••	•••••••		
		(ii) Henc	e find \int tanx	$\sec^2 x \ dx.$			1
••••••	•••••	•••••		••••••	••••••		·•••••
•••••	•••••	•••••	***************************************	******************	••••••	•••••	**************
•••••	••••••	*************	*****************	****************	••••••••	• • • • • • • • • • • • • • • • • • • •	••••••
••••••	••••••	•••••	••••••	************************	••••••	••••••	·•••••••••••••••••••••••••••••••••••••
************	••••••	•••••	***************************************	*****************	•••••••••	•••••	
••••••	••••••	••••••	•••••••••	•••••••••	••••••	•••••	
*************	••••••	•••••••	••••••••	•••••••••	••••••••••	**************	••••••
**********	••••••	*************	••••••••	••••••	•••••	•••••	*******
••••••	••••••	***************************************	•••••••	**************	••••••	****************	*****
						•••••	
***********	*******	••••••	*******************		*******	*****************	
••••••		*****************			••••••	************************	••••••

Question 11 continued on the next page

f)	Given a fu	nction	f(x) =	$\begin{cases} 6x - 0 \end{cases}$	$6x^2$	$0 \le x \le 1$ Otherwise		
	(i)	Show	that $f(x)$			ability density		2
		•••••	•••••					
•••••		•••••	••••••	••••••	••••••			
•••••	•••••		•••••	••••••	•••••			••••••
••••••	••••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••		••••••	••••••
•••••	•••••	•••••	•••••	••••••	•••••	•••••		••••••
******	•••••	•••••	••••••	••••••	•••••	•••••		••••••
•••••	••••••	••••••	••••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••		••••••
•••••		*******	*********	• • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	***************************************		**************
••••••	••••••	••••••	•••••	•••••	••••••	***************************************		••••••
•••••	•••••	••••••	••••••	••••••	•••••	******************		***************************************
	(ii)	Fin	d the mod	le of the	probabi	lity density fun	action $f(x)$.	1
	(ii)	Fin	d the mod	le of the	probabi	lity density fun	action $f(x)$.	1
	(ii) 	Fin	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••	lity density fun		
	(ii)	Fin.	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin-	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin-	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin.	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			1
	(ii)	Fin.	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			
	(ii)	Fin	d the mod	•••••••••••••••••••••••••••••••••••••••	•••••			

End of Question 11

Question 12 (13 Marks)

a) Find the value(s) of b such that $y = 2x + b$ is a tangent to the parabola	2
$y=2x^2+6x-5.$	
•••••••••••••••••••••••••••••••••••••••	••••••
	••••••
	••••••
	•••••
•••••••••••••••••••••••••••••••••••••••	
	•••••
	••••••
	••••••
	•••••
	•••••
	•••••

	•••••
	••••••
	•••••••
	••••••

b) Angela guesses three questions in her multiple choice test, which has four options per question. Find the probability that Angela gets:	
(i) Only one correct answer.	1
	••••
	••••
	••••
	••••
***************************************	••••
	••••
	••••
•••••	••••
	••••
	••••
	••••
	••••
	••••
	••••
	••••
(ii) At least one correct answer.	1
	••••
	••••
	••••
	• • • • •
	••••
	••••
	• • • • •
	••••

c)

(i) Sketch the hyperbola by shifting $y = \frac{1}{x-1}$ horizontally 3 units to the right 2 and 1 unit down.

(ii) State the equation of the shifted hyperbola, then find all the intercepts of the shifted hyperbola with the axes and mark them on your graph in part (i)

2

part (i).

************	***************************************	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••
	***************************************	• • • • • • • • • • • • • • • • • • • •		

.....

d) Consider the piece -wise defined function.

$$f(x) = \begin{cases} x^2 - 1 & x \le 1 \\ 4 - x^2 & x > 1 \end{cases}$$

(i) Find f(1) 1

(ii) Find x if f(x) = 0

(iii) Sketch the function showing all intercepts.

End of Question 12

2

13

Question 13 (18 Marks)

a) (i) Sketch the graphs of $f(x) = 2x - 2x^2$ and g(x) = x - 1 on the same number plane.

(ii) Using your graphs from part (i), or otherwise solve the inequality

2

x - 1	< 2x	$-2x^2$
-------	------	---------

b) A surveyor stands at a point P, which is due east of the tower OT, of height h metres. The angle of elevation of the top of the tower T from P is 30°. The surveyor then walks 100 metres to point B, which is on a bearing of 150° from the foot of tower O. The angle of elevation of the top of the tower from B is now 45°.

` '	-	•					
						•••••	
•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••••	•••
•••••	•••••	•••••				***************************************	•••
		•••••	•••••		••••••	•••••	•••
						***************************************	· · · ·
						••••	
••••••		•••••	••••••	••••••	••••••••	***************************************	•••
	••••••		••••••		••••••		••••
	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••		••••

••••••	••••••••••	***************************************	••••••		••••••		•••
••••••		••••••	•••••••	•••••	•••••	••••••	•••
		•••••		••••••	******************	•••••	•••
*************			•••••	•••••	•••••	•••••	

(i)

Question 13 continued on the next page

	01 41-4	$(100)^2 = h^2 +$, 1	h^2	h^2	1	
(ii)	Show that	$(100)^{-} = h$	tan	² 30°	tan 30°	2	
	•••••		•••••	••••••	***************************************		
	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••			
•••••			•••••	•••••			
•••••			•••••				
•••••			•••••	••••••		••••••	
•••••	•••••		•••••		*****************		
•••••	•••••	•••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
•••••	•••••	•••••••	•••••	•••••	•••••••		
•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
•••••	••••	•••••	**********	•••••	••••••		
	•••••			•••••			
	•••••	•••••	•••••		••••••		
	•••••	••••••		•••••	•••••		
•••••	•••••	•••••••••••••••••••••••••••••••••••••••	************	•••••			
•••••	***************************************	••••••	**********	•••••	•••••		
(iii)	Hence find	l the height o	f the tow	er. Ans	wer correct	to 1 decimal place. 1	
	******		******				
•••••	******	******	***********		*****		

c) The following information shows a group of people's waist measurements and weights.

Waist	72	67	85	96	80	90	98	105
(cm)x								
Weight	58	50	72	85	70	79	82	84
(kg) y								

(i)	Calculate the correlation coefficient, r, for their waist and weight measurement	s 2
	correct to 3 decimal places and hence describe the strength of the relationship.	
		•••••
		· · · · · · ·
••••••		•••••
••••••		•••••
•••••		•••••
••••••		•••••
		•••••
(ii)	Find the equation of the Least -Squares Regression Line.	1
•••••		•••••
••••••		•••••
••••••		
		•••••
		•••••
	·	•••••
		•••••

a) Giv	ven the function $f(x) = \ln(x + 1)$.	
(i)	Find the domain of $f(x)$.	1
•••••		
•••••		
(ii)	Find any stationary point(s) and determine their nature.	2
••••••		•••••
***********		•••••
•••••		•••••

		••••••
•••••		••••••
		••••••
		•••••

End of Question 13

Question	14	(14	marks)	Ì
O CC STOIL				,

a)	(i)	Prove the following identity	1
		$(1 + \tan x)^2 = 2\tan x + \sec^2 x$	
••••••	•••••		•••••
••••••			•••••
*************	•••••		•••••
***************************************	••••••		•••••
*******	••••••		•••••
*************			•••••
***************************************			•••••
*******	••••••		•••••
•••••	•••••		•••••
			2
(11) H	Sence find the area bounded by $y = (1 + \tan x)^2$ and the x —axis between	3
(Hence find the area bounded by $y = (1 + \tan x)$ and the x -axis between $\le x \le \frac{\pi}{4}$.	3
			•••••
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	
	$-\frac{\pi}{4}$	$\leq x \leq \frac{\pi}{4}$	

b) Given $y = 2\sin\left(2x - \frac{\pi}{3}\right)$
(i) State the amplitude and period.
(ii) Find the exact values of all intercepts of 2
$y = 2\sin\left(2x - \frac{\pi}{3}\right)$ with the axes for $0 \le x \le \pi$.
••••••
••••••

(iii) Hence sketch the graph of $y = 2\sin\left(2x - \frac{\pi}{3}\right)$ for $0 \le x \le \pi$, 2 showing all features from part (i) and (ii) and the global maximum and minimum.

•	bag contains three red be replacement from the ba		k balls. Two balls	are selected at ra	andom
Let X be	the number of black ba	lls drawn.			
(i)	Fill in the following t	able and hence fir	nd exact value of	E(X).	2
	x	0	1	2	
	P(X = x)				
*************		••••••	•••••	•••••	•••••
•••••			•••••	•••••	
•••••			•••••	••••••	•••••
**********		•••••	•••••		••••••
•••••		••••••	•••••	•••••	••••••
•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••
		***************************************	***************************************	••••••	••••••
•••••					•••••
(ii)	Find $E(X^2)$ and here	nce find Var(X) a	nd standard devia	ition σ.	2
` '	` '	` ,			
•••••	••••••	•••••••	***************************************	******************************	••••••
******	••••••	***************************************	***************************************	***************************************	••••••
•••••	••••••	***************************************	***************************************	***************************************	•••••
******	••••••	***********************	***************************************	••••••••••••	••••••
******	•••••	•••••	••••••	•••••••••••••••••••••••••••••••••••••••	••••••
******	•••••	••••••	••••••	•••••	•••••
•••••	•••••	•••••••••••	***************************************	•••••••	••••••
•••••		***************************************	••••••••••••	************************	•••••
•••••			•••••••••••••••••••••••••••••••••••••••		***************************************
******	•••••••••••		•••••••••••••••••••••••••••••••••••••••	••••••	••••••
	••••••	•	•••••••••••••••••••••••••••••••••••••••	••••••	•••••
•••••		••••••			•••••
	•••••				

Question 15 (16 marks)

a) The velocity v of a particle in metres per second is given by the formula $v = 5(1 + e^{-t})$, where t is the time in seconds.

(1)	Find the initial velocity of the particle.	ł
 ••••••		••
 		••

.....

(ii) Is the particle ever stationary? Justify your answer. 1

(iii) Sketch the graph of the velocity.

	(iv)	Find the total distance travelled by the particle in the first 5 seconds.	2
•••••	••••••		•••
•••••		•••••••••••••••••••••••••••••••••••••••	•••
•••••			•••
	••••••		•••
			•••
******	•••••		•••
•••••	••••••		
	•••••		•••
	••••••		•••
••••••	•••••		•••
	• • • • • • • • • • • • • • • • • • • •		•••
••••••	•••••		•••
•••••	• • • • • • • • • • •		•••
•••••	•••••		•••
	•••••		•••
•••••	•••••		•••
•••••	•••••		•••
	••••••		•••
	•••••		•••
•••••	•••••		•••
•••••	•••••		•••
•••••	•••••		•••
•••••	•••••		•••
******	•••••		•••
•••••	•••••		•••
******	••••••		•••

Question 15 continued on the next page

b) The line y = mx is a tangent to the curve $y = \ln(2x - 1)$ at a point P.

(i) Sketch the line and the curve on the same diagram, clearly indicating the point P.

2

(ii)	Show that the coordinates of	of P are	$\left(\frac{2+m}{2m}\right)$	$\frac{2+m}{2}$).	2
•••••		•••••	•••••	•••••		•••
•••••		••••••	•••••			•••
••••••		••••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••
	•••••••	••••••	••••••		••••••	•••
••••••		••••••	************	••••••	•••••••••••••••••••••••••••••••••••••••	•••
						•••
		*******	•••••			
						••••
				•••••		····
		•••••				••••
(iii)	Hence show that $2 + m =$	$= \ln \left(\frac{4}{m^2} \right)$.).			2
		(m)			
		(<i>m</i>		•••••		
		(<i>m</i>	<i>)</i> 			
		<i>(m</i>				••••
		<i>(m</i>				••••
		(<i>m</i>				
		<i>(m)</i>				
		(m				

		$f(x) = \bigg\{$	$2e^{-2x}$	$x \ge 0$ otherwise	
(i)	Find the cumulat				2
		••••••	***************************************		•••••
			•••••		

•••••					

•••••		••••••	•••••		•••••
	••••••	•••••••	***************		
			•••••••		
(11)	Hence find the m				2

***************************************		••••••	••••••••		******
•••••		••••••			
•••••	•••••••	••••••	••••••		***************************************
***********	•••••	••••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••
		•••••			••••••
	••••••	••••••	•••••••		•••••
•••••		•••••	•••••		
*************	•••••	••••••	••••••		************
***************************************		••••••	••••••		***************************************
	••••••	•••••	••••••		

c) Given the probability density function

Question 1	6 (14 n	narks)
------------	---------	--------

a) Michelle borrows \$450 000 to be repaid by regular monthly repayments of \$M over a period of 25 years at 6% per annum reducible monthly. Interest is calculated and charged just before each repayment. Let A_n be the amount owing after n -repayments. Show that the expression for the amount owing after two repayments is 1 (i) $A_2 = 450\ 000(1.005)^2 - M(1.005) - M.$ Show that the amount owing after n -repayments is (ii) $A_n = 450\ 000(1.005)^n - M \frac{(1.005)^n - 1}{0.005}$

(iii)	Calculate the amount of each regular monthly repayment.	2
***********		•••••
••••••		•••••
	· · · · · · · · · · · · · · · · · · ·	
•••••		••••••
•••••		***************************************
•••••		***************************************
•••••		***************************************
•••••	······································	***************************************
***************************************		***************************************
••••••		
•••••		••••••
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	***********************

b) An isosceles triangle  $\triangle ABC$  is inscribed within a unit circle centred at O, as shown in the diagram below. Let M be the midpoint of BC,  $\angle BAC = \theta$  and  $\angle BOM = \theta$ .



(1)	Show that the area of	$\Delta ADC$ is $A = \sin \phi (1 + \cos \phi)$ .	~
•••••	••••••		••••••
•••••			***************************************
•••••			***************************************
	•••••		•••••
			***************************************
			***********************

(ii)	Hence prove that the area of the isosceles triangle $\triangle ABC$ is maximum when it 3
	is equilateral.
•••••	
•••••	
•••••	
•••••	
•••••	·
	•••••••••••••••••••••••••••••••••••••••
•••••	
•••••	••••••

c) The graph of  $f(x) = x^2 e^{kx}$  and  $g(x) = -\frac{2xe^{kx}}{k}$  and the line x = 2 is drawn below, where k is a positive constant. f(x) = g(x) at only one point, that is at (0,0).



Let A be the area of the region bounded by the curve y = f(x), y = g(x) and the line x = 2.

(i) Write down a definite integral that gives the value of A.

(ii) The function f(x) from part (i) is given by  $f(x) = x^2 e^{kx}$ , where k is a positive constant. Show that  $f'(x) = xe^{kx}(kx + 2)$ .

.....

(iii)	Using the results of part (i) and (ii), or otherwise, find the value of $k$ such that 2
	$A = \frac{16}{k}.$
•••••	
••••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	······································
*************	
•••••	
*****************	

# **End of Exam**

$$\frac{2}{dx} \log_e \frac{4x^2-9}{2x-3} = \frac{d}{dx} \log_e \frac{(2x-3)(2x+3)}{(2x-3)}$$

$$= \frac{d}{dx} \log_e (2x+3) = \frac{2}{2x+3}$$
B

$$f'(x) = \frac{x}{e^{x^2-8}} :: f(x) = \int \frac{x}{e^{x^2-8}} dx$$

$$f(x) = \int x \cdot (e^{x^2-8}) dx = \int x e^{8-x^2} dx$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

$$= -\frac{1}{2} \int -\frac{1}{2} x \cdot e^{8-x^2} g(x) = -\frac{1}{2} e^{8-x^2}$$

(5) 
$$\mu = \lambda = 55 + 3x = 73$$
 (B)  $\mu = \lambda = 55 + 3x = 73$  (B)

(b) Anea = 
$$34 = \left| \int_{K}^{2} (x-2)^{3} dx \right| + \int_{K}^{4} (x-2)^{3} dx$$
  
 $34 = K \left| \int_{X-2}^{2} (x-2)^{3} dx \right| + K \int_{A}^{4} (x-2)^{3} dx$   
 $34 = K \left| \left[ (x-2)^{4} \right]^{2} \right| + K \left[ (x-2)^{4} \right]^{4}$   
 $34 = K \left| 0 - \frac{1}{4} \right| + K \left[ \frac{16}{4} - 0 \right]$   
 $34 = K \left( \frac{1}{4} + 4 \right)$   
 $K = 8$ 







$$\frac{\partial M}{\partial t} = 4t^{2} - t^{3}$$

$$\frac{\partial M}{\partial t} = 18t - 3t^{2} = 3t (6-t)$$

$$\frac{\partial M}{\partial t} = 4t^{2} - t^{3}$$

$$\frac{\partial M}{\partial t} = 18t - 3t^{2} = 3t (6-t)$$

$$\frac{\partial M}{\partial t} = 4t^{2} - t^{3}$$

$$\frac{\partial M}{\partial t}$$

#### **Section II- Extended Response**

Attempt Questions 11-16.

Allow about 75 minutes for this section.

#### Question 11(14 Marks)

a) Differentiate the following

(i)  $y = (4x - 5)(4x + 5) = \frac{1}{6}x^2 - 25$ 

 $\frac{dy}{dx} = \frac{32x}{1 - correct sol}$ R  $\frac{dy}{dx} = \frac{32x}{1 - correct sol}$ 

 $\frac{dx}{dx} = \frac{1}{100} (400 + 3) + (400 - 20) = 32x$ 

(ii)  $y = \sin^2 x$ 

ay 2 Sing Cosx 2 - correct solu.

ax 1 - correctly diff.

2

b) In AP. T3 = 5 and T10 = 26. Find the sum of S14.

AP:  $T_3 = 5$   $T_{10} = 26$   $T_3 = 5 = \alpha + 2d$   $T_{10} = 26 = \alpha + 9d$   $T_{10} = 26 = \alpha + 2d$   $T_{$ 

c) Evaluate

2

 $\int 5(9x-4)^4 dx$ from incorrect integral correct soln. correctly a solves it correcth no solns. - solution IC= In 2 Conly

(i) Show that $\frac{d}{dx}(\sec^2 x) = 2\tan x \sec^2 x$	2
$LHS = \frac{d}{dx} \left( \frac{1}{\sec x} \right) = \frac{d}{dx} \left( \frac{1}{\cos^2 x} \right)$	- correct soln. - differentiates - correctly secr
$= \frac{d}{dx} \left( \cos x \right) = -\frac{3}{2} \cos x \cdot \left( -\sin x \right)$	- applies trigo
= 2 siuse	identities comes
$= R HS : Shown$ (ii) Hence find $\int \tan x \sec^2 x dx$	1
from(i) = 2 tanx sec 2 1	correct solu.
:. secx = Satanx secxdx	-ignone +c
ii $\frac{1}{2}$ secol = $\int \tan x \sec x dx$ i. $\int \tan x \sec x dx = \frac{1}{2} \sec x + \frac{1}{2}$	~
0x = ± (1+ tam	· sc) + C

(i) Show that $f(x)$ represents probability density	function. 2
fix) represents PDF if 2	-cornect solu
$\int f(x) = \int and f(x) \ge 0$	finds (flow) da
o, Jondonain,	
:. \ 6x-6>1 dx the	correctly
$= \frac{3}{3} \times \frac{2}{3} \times \frac{3}{3} = \frac{3}{3} = \frac{3}{3} \times \frac{3}{3} = $	. /
= [(3-2) - 0] = 1: Yesits PDF	
(ii) Find the mode of the probability density fu	•
$\frac{1}{4} \frac{5 \text{ Ketchin}}{5 \text{ Ketchin}} \frac{f(x)}{f(x)} = \frac{6 \times -6 \times 7}{6 \times (1-x)}$	
fu() 1	
	correct solu
0 1 3C	
2	••••••••
Mode is x= = with	•••••••••••••••••••••••••••••••••••••••
the highest value of ta)	***************************************
V	***************************************

f) Given a function  $f(x) = \begin{cases} 6x - 6x^2 & 0 \le x \le 1 \\ 0 & \text{Otherwise} \end{cases}$ 

End of Question 11

Question 11 continued on the next page

## Question 12 (Marks)

- a) Find the value(s) of m such that y = 2x + m is a tangent to the parabola
- 2

$$v = 2x^2 + 6x - 5.$$

$y=2x^2+6x-5.$	
	2 + correct soln.
y = 2x + m	
y = 2x + m 2 = 3 gradient of tayent	1- finds point
	of contact
-1 y' = 4x + 6 where $m = 2$	by using calculus
: 2 = 40c+6	H-finds A
$y = 4x + 6 \text{ where } m = 2$ $2 = 4x + 6$ $-1 = 2 \qquad y = 2(-1) + 6(-1) - 2$	s correctly by
y 9	usiy simult. equs.
: pt. of contact (-1,-9)	
	1-finds gradient
sub. (-1,-9) 14to y= 2x+m	function correctly
-9=2(-1)+m	& 21-coord. of
-9 = 2(-1) + m m = -7	pt. of contact
) by sim Hampons egn.	
) by simultaneous eqn. $2x + m = 2x^{2} + 6x - 5$	creates
	quadriegn.
$2x^2t + 4x - 5 - m = 0$	cornectly by Solving simul.
D= 0 (since tangent: only	egns, xattempts
$\Delta = 0$ (since tangent: only one so lution)	to solve 10=0
0 = b- 4ac	
$0 = 4^2 - 4(2)(-5 - m)$	***************************************
0=16+40+8m	***************************************
(m = -7)	***************************************
	***************************************
***************************************	***************************************

Question 12 continued on the next page

Angela guesses three questions in her multiple choice test, which has four options per question. Find the probability that Angela gets

	19 c 1/4 C	i		
	1/4 Correct Sta 10		1 -	1
	(c) 1410 Jaic.		••••••	
	3/4 incorrect 1/4 c c	i		
	14 MCONNECT 27 1C.			
*****	74 10 44		,	-
	3/4 IC.			

Only one correct	1	1
P=P(cii)+P(ici)+P(ic)	1-cori	rect soln
= (4) ×(4) ×(4) ×(4)		*******
$= 3 \times \left(\frac{1}{4}\right) \times \left(\frac{1}{4}\right) = \frac{27}{64}$	***************************************	••••••••••••••••

( ii)	At least one correct	1
		••••••
	·····	

T(atleast one correct)	1
=1-f(np correct)	1-correct solu
/2   3   2.57	
$=/-/3/3=\frac{3.7}{3}$	
U 7 64	
	***************************************

Question 12 continued on the next page

(i) Sketch the hyperbola by shifting  $y = \frac{1}{x-1}$  horizontally 3 units to the right 2 and 1 unit down.



(ii) State the equation of the shifted hyperbola, then find all the intercepts 2 of the shifted hyperbola with the axes and mark them on your graph in part (i).

i
correct solu.
- correcteyn.
- one of the
intercepts correct
and lubeled
on the graph
***************************************

(d) Consider the piece -wise defined function.

$$f(x) = \begin{cases} x^2 - 1 & x \le 1 \\ 4 - x^2 & x > 1 \end{cases}$$

(i) Find f(1) $f(1) = 1^2 - 1 = 0$ 1-correct solu

(ii) Find x if f(x) = 0 f(x) = 0 2 + correct answers  $4 - x = 0 : x = \pm 2 \quad |- at| \quad 4 = 0 \text{ in } x = \pm 1$   $bu + x > 1 : x = \pm 2 \quad \text{correct without excluding } x = -1$ 

(iii) Sketch the function showing all intercepts.



**End of Question 12** 

#### Question 13 (18 Marks)

a) (i) Sketch the graphs of  $f(x) = 2x - 2x^2$  and g(x) = x - 1 on the same number plane.



(ii) Using your graphs from part (i), or otherwise solve the inequality

2

$x-1<2x-2x^2.$	j
f(x) ng(x)=pts. of intersection	a correct solus.
$f(x) \cap g(x) = pts$ of intersection : x-1 = 2x-2x	1-finds pts. of
$2x^2-3c-1=0$	intersection
(2)(+1)(x-1)=0	f(se) () g(x)
$z = -\frac{1}{2}  x = 1$	correctly
- 9(x)	C(x)
:- answer graphically (line below )	ambola)
ニマス イ /	
2	•••••••••••••••••••••••••••••••••••••••
	,
	***************************************
	***************************************

Question 13 continued on the next page

b) A surveyor stands at a point P, which is due east of the tower OT, of height h metres. The angle of elevation of the top of the tower T from P is 30°. The surveyor then walks 100 metres to point B, which is on a bearing of 150° from the foot of tower O. The angle of elevation of the top of the tower from B is now 45°.



Express the length of OP in terms of h.

from s OPT	1
	1- cornect expression with tan 30°
tan 30° = 10P	expression
OP OP	with tan30°
OP = h	1-cornect answ
4au30°	OP=13 h
OR OP = 13h	
	***************************************

Question 13 continued on the next page

(iii) Show that $(100)^2 = k^2$ .	L ————	
(ii) Show that $(100)^2 = h^2$	tan ² 30° tan 30°	1 2
to.	_	2-correct soln-
0	> north	atcorner soin
6		1
	***************************************	1 1 1 1 1
		1+ finds expression
100	<b>_</b> '	for OB
100		
1	east	and applies
1500		and applies cosine rule for
A		7/
Sum & BOT: You	45 = =	10 PB correctly
	00	1 13.1
	BO=h BO+0P=280:0P. 4	1- finds expression
osine $M/R$ $RP^2$	202.003.22	for OB and
	00 4 01 - 250.0P. 4	0500 800 - 100
1003-12-12		2 BUY 2 60
- W 7	~ ~ X hx x -	
: 100 - h 4 h 2		***************************************
100 = 4 + 4		I
tan2	30	
<b>-</b>	טב שום ביי	
(m) Hence mid the height of the	e tower. Answer correct to 1 de	cimal place.
,	_	
100 = h ( 1+		
100 = h (1+	Lan 30° tan 30	0)
***************************************	Lan 30° tan 30	•
, r 100	<u></u>	•
, r 100	<u></u>	
, r 100	<u></u>	o)  It correct answer
, r 100	<u></u>	
, r 100	tan 30° tan 30° 30° tan 30°)	1- correctanswer
h = (1+ \frac{100}{6m}	30° - 1 30°)	1- correctanswer
h = (1+ \frac{100}{6m}	30° - 1 30°)	1- correctanswer
h = (1+ \frac{100}{6m}	<u></u>	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - 1 30°)	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14}{1409}$	30° - Lm30°) 269852	1- correctanswer
$h = \frac{100}{1 + \frac{1}{600}}$ $h = \frac{14409}{1000}$ $h = \frac{1}{1000}$	30° - Lm30°) 269852	1-correctanswer  (ignore rounding)

c) The following information shows a group of people's waist measurements and weights.

Waist (cm)x	72	67	85	96	80	90	98	105
Weight (kg) y	58	50	72	85	70	79	82	84

Calculate the correlation coefficient, r, for their waist and w	eight	t measureme	nts
and hence describe the strength of the relationship.			2
		•••••	
r = 0.9592	Fe	prrect	50ln.
(calculator)			
Strong correlation 1	<u> </u>	correct	~
positive	<u> </u>		
1	-	from 46	ieir r
		eorrect	conclus
		for stre	ngth
		of the ne	lationsh
Find the equation of the Least -Squares Regression Line.			1
from calculator	••••••		•••••
A=- 8.2368	<i>I</i> -	correct	- 50/ns
B = 0.93203			
		•	******
$y = A + B \times$		***************************************	*****
		*******************	•••••
y = -8.2368 + 0.932031		•••••••••••••••••	•••••
	ţ		*****
		······································	
	and hence describe the strength of the relationship.	and hence describe the strength of the relationship. $r = 0.9592$ $(calculator)$ Strong correlation $positive$ $positive$ Find the equation of the Least-Squares Regression Line. $r = 8.2368$ $r = 8.2368$ $r = 9.93203$ $r = 4 + 8 \times 2$	$r = 0.9592$ Learnect  (calculator)  Strong correlation I+ correct  positive I from 46  eprrect  Abr stre  of the re  Find the equation of the Least-Squares Regression Line.  From calculator $A = -8.2368$ $B = 0.93203$ $Y = A + B \times A$

d) Given the function  $f(x) = \ln(x^2 + 1)$ . Find the domain of f(x). 1- correct solus. which is always :. Domain = all real x Find any stationary point(s) and determine their nature. 1- finds stationary
point correctly
1- determines the
nature of st. point Nature by f" or table (0,0) is minimum turning

Question 13 continued on the next page

i. (0,0) is min.t.p.





**End of Question 13** 

### Question 14 (14 marks)

a) (i) Prove the following identity

	1-correctsolns
LHS= (1+ banz)	
= 1 + 2 Ganx + tan >c	
= 14 tan > < +2 tan >	And the second
2	
= secx +2 tanx	
= AHS	
$-\frac{\pi}{4} \le x \le \frac{\pi}{4}$	the x-axis between 3
since (1+tanx)> 0 for 7 x = 7	
since (1+tanx)>0 for 4=x=4 Area = (1+tanx) 2 doc	2 - correct solus.
since (1+tanx)>0 for 4-x=7  Anea = (1+tanx) 2 doc -T	2 - correct solus.
Area = (1+ tours) 2 doc	2-correct solus. 1-correctly integrate tunoc
Area = (1+ tours) 2 doc	2- correct solns.  1- correctly integrate  + xnsc  1- correctly uses
Thea = (1+ bunx) doc  -T  -T  -T  -T  -T  -T  -T  -T  -T  -	2 - correct solus.  1 - correctly integrate  tansc
Area = (1+ tours) 2 doc	2- correct solns.  1- correctly integrate  + xnsc  1- correctly uses

Question 14 continued on the next page

b) given $y = 2\sin\left(2x - \frac{\pi}{3}\right)$	
(i) State the amplitude and period.	2
	correct solus.
	correct augliti
	and perio
	•••••••••••••••••••••••••••••••••••••••
(ii) Exact values of $y = 2\sin\left(2x - \frac{\pi}{3}\right)$ with the axes for	$0 \le x \le \pi \qquad 2$
y-int :  x=0	correct solus.
y = 2 sin (2/0) - 13	. /
y = -2 = -√3	correcty-int
" (0,-V3) y-int.	······································
c-inti v=0	•••••••••••••••••••••••••••••••••••••••
$0 = 2\sin\left(2x - \frac{1}{3}\right)$	
$2x - \frac{\pi}{3} = 0,  \overline{\pi},  2\pi$	••••••••••
:, 2( = 16) 6) 8 sout of low	
17 A /217 A	<del></del>
$\left(\begin{array}{c} \overline{17} \\ \overline{6} \end{array}\right) \left(\begin{array}{c} 2\overline{17} \\ \overline{3} \end{array}\right) 0$ are $x - ixt$	••••••

Question 14 continued on the next page

(iii) Hence sketch the graph of  $y = 2\sin\left(2x - \frac{\pi}{3}\right)$  for  $0 \le x \le \pi$  showing all features from part (i) and (ii) and global maximum and minimum.



2-correct graph

1-correct shape

and x, y-intercepts

1-showing correct

Max / Min

Question 14 continued on the next page

c) A bag contains three red balls and four black balls. Two balls are selected at random without replacement from the bag.

Let X be the number of black balls drawn. exact value of

3/7 4/6 B  $P(0) = \frac{3}{7} \times \frac{2}{6} = \frac{1}{7} - \frac{1}{7} + \frac{1}{7}$ 

 $E(x) = \sum 2cp(x) = 0x + 1x + 0x + 0x = 0$ 

(ii) Find  $E(X^2)$  and hence find Var(X) and  $\sigma$ 

E(X)= 2 xp(x)=0x+1x+1x+2x+

E(X') = 9

2-correct soln. 1-correct E(X

2

2

 $Var(x) = E(x^{\prime}) - \mu$ 

1-finds Var (X

 $=\frac{12}{7}-\left(\frac{8}{7}\right)=\frac{20}{49}$ 

 $dar(x) = \frac{20}{49}$  :  $\sigma = 0.63 ss76...$ 

End of question 14

a) The velocity v of a particle in metres/seconds is given by the formula

 $v = 5(1 + e^{-t})$ , where t is time in seconds.

Find the initial velocity of the particle.



Is the particle ever stationary? Justify your answer.



Sketch the graph of the velocity.



Find the total distance travelled by the particle in the first 5 seconds.

	7
	~

5			
$d = \int 5(1+e^{t}) dt$	7	-correct	SOINS.
) 3 ( ) 2 (	4]	- correct	······
		••••	•••••
= 5 [t-e] 5		• • • • • • • • • • • • • • • • • • • •	•••••
<u> </u>		•••••	******
- 5/ -5 ( 0)/			
$= 5/5 - \epsilon - (0 - \epsilon^{\circ})$		******************************	•••••
	[	***************************************	******
=5(5-e+1)		***************************************	*****
		***************************************	
= 30-5e (metres) exact	- -	***************************************	*****
_	•••••	***************************************	•••••
$(\overline{OR}) d = 29.97 (2d.p)$	•••••	•••••	·······
		•••••	•••••
		•••••	•••••
		****************	•••••
	••••	*******************************	
	••••		
			••••
	•••••	***************************************	•••••
		***************************************	••••
	•••••	*************************	•••••
	****		••••
***************************************	•••••	••••••	••••

Question 15 continued on the next page

Sketch the line and the curve on the same diagram, clearly indicating the point P.



$$y = ln(2x-1)$$
  
 $2x-1 > 0$   
 $2x-1 = 1$   
 $x > \frac{1}{2}$   
 $(x-int)$ 

y = mx -> passiy Herough (0,0)

2- correct graphs 1- cornect log. graph
1- correct graph
often line (0,0) & clearly point of contact P(26,4).

Question 15 continued on the next page

(ii)	Show that the coordinates of $P$ are	$\left(\frac{2+m}{2m},\frac{2+m}{2}\right)$	2
			feormed solus.
<u>.</u>	= /n(2x-1)	•	-equales y=m
: <u>.</u>	$\frac{1}{2}$	•	and solves forx
			- subotitutes
1+	y = mx is alange	ent to y=/n(2x-1)	x-value into
	$\frac{1}{2x-1} \left( a \right)$	tppint P(zy)	one of the egns.
***********	22-1= = = ==	•••••••••••••••••••••••••••••••••••••••	<u> </u>
*********	, , , , , , , , , , , , , , , , , , ,		9 440
*********	22 = 2m +/	スニなっちっ	2m
sub	into y=	mχ	
	i y = mx-	2+m _2+n	7_
	( )	2	
(iii)	Hence show that $2 + m = \ln\left(\frac{4}{m^2}\right)$		. 2
		2-	correct solns.
ince	$P\left(\frac{2+m}{2m},\frac{2+m}{2}\right)$	2- (pant ii) 1-	sub. apordinates
********	$P\left(\frac{2+m}{2m},\frac{2+m}{a}\right)$	(partii) 1-	of Pinto
rnd	Plies on y= In (.	(part ii ) 1- 2x-1)	sub. apordinates  of $P$ into $y = ln(21 - 1)$
and	Plies on y=ln(.	(partii) 1- 2x-1) equation	sub. approdinates  of P into  y=ln(21-1)  and attempts
and	P lies on $y = ln$ ( pord. of 7 satisfy .in: $y = ln$ (2x-	(part ii) 1- 2x-1) equation	sub. apordinates  of $P$ into $y = ln(21 - 1)$
and	Plies on y=ln(.	(part ii) 1- 2x-1) equation	sub. approdinates  of P into  y=ln(21-1)  and attempts
and	P lies on $y = \ln ($ sord. of 7 satisfy in: $y = \ln (2x - 1)$ $2 + \ln (2x - 1)$	(part ii) 1- 2x-1) equation () +m ) 1)	sub. apordinates  of P into  y=In(21-1)  and attempts  to solve it
and	P lies on $y = ln$ ( pord. of 7 satisfy .in: $y = ln$ (2x-	(part ii) 1- 2x-1) equation () +m ) 1)	sub. apordinates  of P into  y=In(21-1)  and attempts  to solve it
and	P lies on $y = \ln ($ pord. of 7 satisfy in: $y = \ln (2x - 1)$ $\frac{2+m}{2} = \ln \left(\frac{2}{x}\right)$	(partii) 1- $2x-i)$ $equation$ $+m - 1$ $+m - 1$	sub. apordinates  of Pinto  y=In(21-1)  and attempts  to solve it  (2 + m - 1)
and	P lies on $y = \ln ($ pord, of 7 satisfy in: $y = \ln (2x - 1)$ $2 + \ln (2x - 1)$	(partii) 1- $2x-1)$ $= quation$ $+m - 1 - 1$ $+m - 1 - 1 - 1$ $= r$	sub. apordinates  of P into  y=In(21-1)  and attempts  to solve it $\left(\frac{2}{m}, \frac{m}{m}\right)$ In $\left(\frac{2}{m}, \frac{m}{m}\right)$
and	P lies on $y = \ln ($ pord, of 7 satisfy in: $y = \ln (2x - 1)$ $2 + \ln (2x - 1)$	(partii) 1- $2x-1)$ $= quation$ $+m - 1 - 1$ $+m - 1 - 1 - 1$ $= r$	sub. apordinates  of P into  y=In(21-1)  and attempts  to solve it $\left(\frac{2}{m}, \frac{m}{m}\right)$ In $\left(\frac{2}{m}, \frac{m}{m}\right)$
and	P lies on $y = \ln ($ pord. of 7 satisfy in: $y = \ln (2x - 1)$ $\frac{2+m}{2} = \ln \left(\frac{2}{x}\right)$	$(partii) = 1$ $2x-1$ $equation$ $+m = 1$ $\frac{1}{m} = n$ $\frac{2}{m} = n = n$ ed on the next page	sub. apordinates  of P into $y = ln(2x - 1)$ and attempts  to solve it $\left(\frac{2}{m} + \frac{m}{m} - 1\right)$ $\left(\frac{2}{m} + \frac{4}{m^2}\right)$
and	P lies on $y = ln$ ( pord. of 7 satisfy  in: $y = ln$ (2x-  2+m = $ln$ ( $\frac{2}{x}$ 2+m = $ln$ ( $\frac{2}{x}$ 2+m = $ln$ ( $\frac{2}{n}$ i. $2+m = 2 ln$ ( $\frac{2}{n}$	$(partii) = 1$ $2x-1$ $equation$ $+m = 1$ $\frac{1}{m} = n$ $\frac{2}{m} = n = n$ ed on the next page	sub. apordinates  of P into  y=In(21-1)  and attempts  to solve it $\left(\frac{2}{m}, \frac{m}{m}\right)$ In $\left(\frac{2}{m}, \frac{m}{m}\right)$

(2+m 2+m)

### c) Given the probability density function

$$f(x) = \begin{cases} 2e^{-2x} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$$

(i) Find the cumulative distribution function $F(x)$ .	2
2 -2.20	correct solus.
$F(x) = \int_{-\infty}^{\infty} dx \frac{dx}{x}$	- correctly
$F(x) = 2x - \frac{1}{2} \left[ e^{-2x^2 - x} \right]$	integrates flx)
$f(X) = \alpha X - \frac{1}{2} \left\{ e \right\}$	••••••
F(x) = -[e-x-e]	
$F(x) = -e^{-2x} + 1$	
(ii) Hence find the median.	2
let m be median 2-	correct solus.
	equales Flow=1
T = -1 /- / 2	and shows
2 · e · / (X=M)	significant progress
	to find the value
/n(2x) = /1 1/2	of the median.
$-2\chi = \ln \frac{1}{2}$	••••••
$2C = -\frac{1}{5} \ln \frac{1}{5}$ (median)	
: median= - 1/n for In V2 or	0.347

End of question 15

# Question 16 (14 marks) \$ 450 000

- a) Michelle borrows \$50.000 to be repaid by regular monthly repayments of \$P over a period of 25 years at 6% per annum reducible monthly. Interest is calculated and charged just before each repayment.
  - Let  $A_n$  be the amount owing after n -repayments.
- (i) Show that the expression for the amount owing after two repayments is

$A_2 = 450 \ 000(1.005)^2 - P(1.005) - P$	,
1	correct solv
A = 450000 (1+6=12)-P	
1	
= 450000 (1.005) - P	
$A_2 = A_1(1.005) - P$ = 450000×1.0052 - P(1.005) - P	
= 450 000 ×1.0052- P(1.005)-P	
:. show i	1
	·····

(ii) Show that the amount owing after n -repayments is

 $A_n = 450\ 000(1.005)^n - P \frac{(1.005)^n - 1}{0.005}$ 

following pattern

(from (i)  $A_n = 450000 (1.005)^n - P(1.005) - ... - P$ ...  $A_n = 450000 (1.005)^n - P(1.005 + ... + 1)$ 

:.  $4n = 45000(1.005)^{-1} - \frac{1}{1-1}$  2 cornect solu  $4n = 450000(1.005)^{-1} - \frac{1}{1-1}$  2 cornectly applies  $4n = 450000(1.005)^{-1} - \frac{1}{1-1}$  pattern from (i) 1.005 - 1 1 cornectly applies

 $A_{n} = 450000(1.005)^{n} - 7 \frac{(1.005)^{n} - 1}{0.005}$ 

forum la

2

Question 16 continued on the next page

(iii) Calculate the amount of each repayments P.

7	
4	

***************************************		.1
after 25 years = 25x/2=	300=n 2-	correct soln.
*	00 200 1-	usin partli)
:. A 300 = 0 = 450 000 (1.005)	- p 1.005 -1	Consoll on de
360 - 0 - 130 000 (1103)	0-005	D D
2.00	0.003	7300 = 0
1.005300	,\.390	and attempts
P-1.005300 1 = 450000 (	1-905)	tosalve itfort
<del>-</del>		
P= 45.0000 (1.90 5)30	0	•••••••
7= 200	- x0:005	********************************
1.005		***************************************
		************************
P= \$2899.356	3	
:./P= \$ 2899, 3	36	•••••••
		********************************
		******************************
	••••••	***************************************
•••••	•••••	************************
	***************************************	***************************************
	***************************************	***************************************
······································	***************************************	***************************************
		***************************************
	••••••	•••••
	***************************************	***************************************
	***************************************	******************
	••••••	***************************************

b) An isosceles triangle  $\triangle ABC$  is inscribed within a unit circle centred at O, as shown in the diagram below. Let M be the midpoint of BC,  $\angle BAC = \theta$  and  $\angle BOM = \theta$ .



Show that the area of  $\triangle ABC$  is  $A = \sin\theta(1 + \cos\theta)$ 

() omo(1 · 0000).		. **
	2-	correct soln
Area AABC = 2 BCXAM (AML BC)	l-	finds BCo
base koght		AM in term
base kight		of 8
- how 508H		
$\frac{808M}{6} = \frac{8M}{5}$	٧.	***************************************
(=)	9 <b>*</b> 7	***************************************
cosp = 04	•••••	
В		***************************************
AM= AD +OM = 1+ cost		***************************************
$BC = \lambda \times BM = \lambda \times \sin \theta$	••••••	***************************************
	*******	***************************************

 $Area = \frac{1}{2} \times BC \times AM = \frac{1}{2} \times dsin\theta_{\times} (14cos\theta)$   $A = sin \theta (14cos\theta) : shown$ 

Question 16 continued on the next page

Question 16 continued on the next page

- (iii) Hence prove that the area of the isosceles triangle is maximum when it is equilateral.
- 3

	3-	correct solu.
		finds stationary
A' = COSO (1+COSO) + SILO (0-5148)		
		differentiates Area
: A = cos 0 + cos 0 - sin 0		formula correctly
		& attempts to solu
A = D		A =0
0 = coso + coso - 5m 0	/-	determines the
2-	• • • • • • •	*********************

 $0 = \cos \theta + \cos \theta - \sin \theta$  | determines  $0 = \cos \theta + \cos \theta - (1 - \cos \theta)$  | nature of s

 $0 = 2\cos\theta + \cos\theta - 1$  and concludes for  $\theta = (2\cos\theta - 1)(\cos\theta + 1)$ 

 $0 = \frac{1}{3}, \frac{5\pi}{3} - impossible in Friangle & b-acute$ 

 $\therefore \theta = \frac{\pi}{3} \left( \text{the only solution} \right)$ 

Nature 8 1 1 1.1 A' 0.124 0 -0.135

0=3

at 0 = T Area is Maximum

but if  $\theta = \frac{\pi}{3}$  in ABC is equilateral and given ABC is isosecles.

Question 16 continued on the next page

c) The graph of  $f(x) = x^2 e^{kx}$  and  $g(x) = -\frac{2xe^{kx}}{k}$  and the line x = 2 is drawn below. f(x) = g(x) at only one point, that is at (0,0).



Let A be the area of the region bounded by the curve y = f(x), y = g(x) and the line x = 2.

- (i) Write down a definite integral that gives the value of A.  $A = \int f(x) g(x) dx$   $A = \int f(x) g(x) dx$  A =
- (ii) The function f(x) from part (i) is given by  $f(x) = x^2 e^{kx}$  where k is a positive 1 constant. Show that  $f'(x) = x e^{kx} (kx + 2)$



Question 16 continued on the next page

(iii) Using the results of part (i) and (ii), or otherwise, find the value of k such that 2  $A = \frac{16}{k}.$ 

from (i)  $A = \int x e^{-\frac{\pi}{2}} dx$ 

 $A = \int \frac{1}{2} \left( \frac{kx}{e} \right) + \frac{2xe^{kx}}{e} dx$ 

 $= \frac{1}{k} \int_{-k}^{k} k x^{2} e^{kx} + 2xe^{kx} dx$ 

 $= \int_{K} \int_{C} xe^{KX} \left( kx + 2 \right) dx$ 

but = f(sc)

 $A = \frac{1}{K} \left[ \frac{\chi^2 k^2}{\chi^2} \right]^2$ 

 $i+A=\frac{16}{K}$  2-correct solars.

16 = 12e - 0  $16 = 4e^{2k}$ 

4 = e2k

ln 4 = 2k End of Exam

 $K = \frac{1}{2} \ln 4$  or  $K = \frac{1}{4} \sqrt{4} = \frac{1}{4}$